論文の概要: Quantum-data-driven dynamical transition in quantum learning
- arxiv url: http://arxiv.org/abs/2410.01955v1
- Date: Wed, 2 Oct 2024 18:58:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 09:44:41.956548
- Title: Quantum-data-driven dynamical transition in quantum learning
- Title(参考訳): 量子学習における量子データ駆動動的遷移
- Authors: Bingzhi Zhang, Junyu Liu, Liang Jiang, Quntao Zhuang,
- Abstract要約: 量子ニューラルネットワーク(QNN)は、短期的に量子優位を達成するためのパラダイムを提供する。
我々は、目標値とデータがトレーニングの指数収束を決定する量子データ駆動の動的遷移を明らかにする。
我々は、一般化された制限されたハールアンサンブルによる遷移を説明する非摂動理論を提供する。
- 参考スコア(独自算出の注目度): 7.3025867148089745
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum circuits are an essential ingredient of quantum information processing. Parameterized quantum circuits optimized under a specific cost function -- quantum neural networks (QNNs) -- provide a paradigm for achieving quantum advantage in the near term. Understanding QNN training dynamics is crucial for optimizing their performance. In terms of supervised learning tasks such as classification and regression for large datasets, the role of quantum data in QNN training dynamics remains unclear. We reveal a quantum-data-driven dynamical transition, where the target value and data determine the polynomial or exponential convergence of the training. We analytically derive the complete classification of fixed points from the dynamical equation and reveal a comprehensive `phase diagram' featuring seven distinct dynamics. These dynamics originate from a bifurcation transition with multiple codimensions induced by training data, extending the transcritical bifurcation in simple optimization tasks. Furthermore, perturbative analyses identify an exponential convergence class and a polynomial convergence class among the seven dynamics. We provide a non-perturbative theory to explain the transition via generalized restricted Haar ensemble. The analytical results are confirmed with numerical simulations of QNN training and experimental verification on IBM quantum devices. As the QNN training dynamics is determined by the choice of the target value, our findings provide guidance on constructing the cost function to optimize the speed of convergence.
- Abstract(参考訳): 量子回路は量子情報処理の重要な要素である。
特定のコスト関数、量子ニューラルネットワーク(QNN)の下で最適化されたパラメータ化量子回路は、近い将来に量子優位を達成するためのパラダイムを提供する。
QNNのトレーニングダイナミクスを理解することは、パフォーマンスの最適化に不可欠である。
大規模データセットの分類や回帰といった教師付き学習タスクに関しては、QNNのトレーニングダイナミクスにおける量子データの役割はいまだ不明である。
対象値とデータがトレーニングの多項式あるいは指数収束を決定する量子データ駆動の動的遷移を明らかにする。
解析的に、固定点の完全な分類を力学方程式から導き出し、7つの異なる力学を特徴とする総合的な「位相図」を明らかにする。
これらのダイナミクスは、訓練データによって誘導される複数の余次元を持つ分岐遷移から始まり、単純な最適化タスクにおいて超臨界分岐を延長する。
さらに摂動解析は、7つの力学のうち指数収束類と多項式収束類を同定する。
我々は、一般化された制限されたハールアンサンブルによる遷移を説明する非摂動理論を提供する。
解析結果は、IBM量子デバイス上でのQNNトレーニングと実験的検証の数値シミュレーションで確認される。
目標値の選択によってQNNのトレーニングダイナミクスが決定されるので, コンバージェンスの速度を最適化するコスト関数の構築に関するガイダンスを提供する。
関連論文リスト
- Quantum reservoir computing on random regular graphs [0.0]
量子貯水池コンピューティング(QRC)は、入力駆動多体量子システムと古典的な学習技術を組み合わせた低複雑性学習パラダイムである。
我々は、情報局在化、動的量子相関、および乱れハミルトニアンの多体構造について研究する。
そこで本研究では、乱れたアナログ量子学習プラットフォームの最適設計のためのガイドラインを提供する。
論文 参考訳(メタデータ) (2024-09-05T16:18:03Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Data-Driven Characterization of Latent Dynamics on Quantum Testbeds [0.23408308015481663]
我々は、パラメータ化された元項でリンドブラッドマスター方程式によって記述された量子系の力学方程式を拡大する。
本稿では,線形演算子に基づいてパラメータ化された発散潜在力学からユニタリを学習し,区別する拡張を保存する構造について考察する。
我々は、我々の解釈、構造保存、非線形モデルがリンドブラッドマスター方程式の予測精度を向上させることを実証した。
論文 参考訳(メタデータ) (2024-01-18T09:28:44Z) - Coreset selection can accelerate quantum machine learning models with
provable generalization [6.733416056422756]
量子ニューラルネットワーク(QNN)と量子カーネルは、量子機械学習の領域において顕著な存在である。
我々は、QNNと量子カーネルのトレーニングを高速化することを目的とした、コアセット選択という統一的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-19T08:59:46Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Toward Physically Realizable Quantum Neural Networks [15.018259942339446]
量子ニューラルネットワーク(QNN)の現在のソリューションは、スケーラビリティに関する課題を提起している。
QNNの指数的状態空間は、トレーニング手順のスケーラビリティに課題をもたらす。
本稿では量子パーセプトロンの転送関数の帯域制限フーリエ展開に依存するQNNの新しいモデルを提案する。
論文 参考訳(メタデータ) (2022-03-22T23:03:32Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Chaos and Complexity from Quantum Neural Network: A study with Diffusion
Metric in Machine Learning [0.0]
量子ニューラルネットワーク(QNN)の機械学習力学における量子カオス現象と複雑性について検討する。
統計的および微分幾何学的手法を用いてQNNの学習理論を研究する。
論文 参考訳(メタデータ) (2020-11-16T10:41:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。