論文の概要: Spiking Neural Network as Adaptive Event Stream Slicer
- arxiv url: http://arxiv.org/abs/2410.02249v2
- Date: Fri, 08 Nov 2024 08:32:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 18:11:26.857317
- Title: Spiking Neural Network as Adaptive Event Stream Slicer
- Title(参考訳): 適応型イベントストリームスライダとしてのニューラルネットワークのスパイキング
- Authors: Jiahang Cao, Mingyuan Sun, Ziqing Wang, Hao Cheng, Qiang Zhang, Shibo Zhou, Renjing Xu,
- Abstract要約: イベントベースのカメラは、リッチエッジ情報、高ダイナミックレンジ、高時間分解能を提供する。
最先端のイベントベースのアルゴリズムの多くは、イベントを固定グループに分割することに依存しており、重要な時間情報の欠落をもたらす。
SpikeSlicerは、イベントストリームを適応的に分割可能な、新規に設計されたプラグアンドプレイイベント処理方式である。
- 参考スコア(独自算出の注目度): 10.279359105384334
- License:
- Abstract: Event-based cameras are attracting significant interest as they provide rich edge information, high dynamic range, and high temporal resolution. Many state-of-the-art event-based algorithms rely on splitting the events into fixed groups, resulting in the omission of crucial temporal information, particularly when dealing with diverse motion scenarios (\eg, high/low speed).In this work, we propose SpikeSlicer, a novel-designed plug-and-play event processing method capable of splitting events stream adaptively.SpikeSlicer utilizes a low-energy spiking neural network (SNN) to trigger event slicing. To guide the SNN to fire spikes at optimal time steps, we propose the Spiking Position-aware Loss (SPA-Loss) to modulate the neuron's state. Additionally, we develop a Feedback-Update training strategy that refines the slicing decisions using feedback from the downstream artificial neural network (ANN). Extensive experiments demonstrate that our method yields significant performance improvements in event-based object tracking and recognition. Notably, SpikeSlicer provides a brand-new SNN-ANN cooperation paradigm, where the SNN acts as an efficient, low-energy data processor to assist the ANN in improving downstream performance, injecting new perspectives and potential avenues of exploration.
- Abstract(参考訳): イベントベースのカメラは、リッチエッジ情報、高ダイナミックレンジ、高時間分解能を提供するため、大きな関心を集めている。
多くの最先端のイベントベースのアルゴリズムは、イベントを固定グループに分割することに依存しており、特に多様な動きシナリオ(高速度、低速度)を扱う場合、重要な時間情報の欠落をもたらす。
本研究では、イベントストリームを適応的に分割できる新規に設計されたプラグアンドプレイイベント処理手法であるSpikeSlicerを提案し、低エネルギースパイキングニューラルネットワーク(SNN)を用いてイベントスライシングをトリガーする。
最適な時間ステップでスパイクを発生させるためのSNNの誘導として,ニューロンの状態を調整するスパイキング位置認識損失(SPA-Loss)を提案する。
さらに、下流人工ニューラルネットワーク(ANN)からのフィードバックを用いて、スライシング決定を洗練するフィードバック更新トレーニング戦略を開発する。
大規模実験により,イベントベース物体追跡・認識において,本手法が大幅な性能向上をもたらすことが示された。
特に、SpikeSlicerは、新しいSNN-ANN協調パラダイムを提供しており、SNNは、ANNが下流のパフォーマンスを改善し、新たな視点と潜在的な探索手段を注入するのを支援するために、効率的で低エネルギーのデータプロセッサとして機能する。
関連論文リスト
- Towards Low-latency Event-based Visual Recognition with Hybrid Step-wise Distillation Spiking Neural Networks [50.32980443749865]
スパイキングニューラルネットワーク(SNN)は、低消費電力と高い生物性のために大きな注目を集めている。
現在のSNNは、ニューロモルフィックデータセットの正確性とレイテンシのバランスをとるのに苦労している。
ニューロモルフィックデータセットに適したステップワイド蒸留法(HSD)を提案する。
論文 参考訳(メタデータ) (2024-09-19T06:52:34Z) - EventRPG: Event Data Augmentation with Relevance Propagation Guidance [25.899827299880577]
スパイキングニューラルネットワーク(SNN)におけるイベントベース分類タスクにおけるオーバーフィッティングは重要な問題である
データ拡張は、ニューラルネットワークの過度な適合を緩和し、一般化能力を改善するための、シンプルだが効率的な方法である。
本研究では、より効率的な拡張のために、スパイキングニューラルネットワーク上の関連伝播を利用するEventRPGを提案する。
論文 参考訳(メタデータ) (2024-03-14T10:52:45Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
本稿では,SNN(Spike Neural Networks)とU-Netアーキテクチャを組み合わせた,画像処理のためのスパイキング-UNetの概念を紹介する。
効率的なスパイキング-UNetを実現するためには,スパイクによる高忠実度情報伝播の確保と,効果的なトレーニング戦略の策定という2つの課題に直面する。
実験の結果,画像のセグメンテーションとデノイングにおいて,スパイキングUNetは非スパイキングと同等の性能を発揮することがわかった。
論文 参考訳(メタデータ) (2023-07-20T16:00:19Z) - Best of Both Worlds: Hybrid SNN-ANN Architecture for Event-based Optical Flow Estimation [12.611797572621398]
非同期イベント駆動型計算でニューラルネットワーク(SNN)をスパイクすることは、イベントストリームから機能を抽出する大きな可能性を秘めている。
本稿では,両者の強みを組み合わせた新しいSNN-ANNハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-05T15:26:02Z) - Adaptive-SpikeNet: Event-based Optical Flow Estimation using Spiking
Neural Networks with Learnable Neuronal Dynamics [6.309365332210523]
ニューラルインスパイアされたイベント駆動処理でニューラルネットワーク(SNN)をスパイクすることで、非同期データを効率的に処理できる。
スパイク消滅問題を緩和するために,学習可能な神経力学を用いた適応型完全スパイキングフレームワークを提案する。
実験の結果,平均終端誤差(AEE)は最先端のANNと比較して平均13%減少した。
論文 参考訳(メタデータ) (2022-09-21T21:17:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Self-Supervised Learning of Event-Based Optical Flow with Spiking Neural
Networks [3.7384509727711923]
ニューロモルフィックコンピューティングの大きな課題は、従来の人工ニューラルネットワーク(ANN)の学習アルゴリズムがスパイクニューラルネットワーク(SNN)に直接転送されないことである。
本稿では,イベントベースカメラ入力からの光フロー推定における自己教師型学習問題に着目した。
提案するANNとSNNの性能は,自己教師型で訓練された現在の最先端のANNと同等であることを示す。
論文 参考訳(メタデータ) (2021-06-03T14:03:41Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。