論文の概要: Semantic Communication and Control Co-Design for Multi-Objective Correlated Dynamics
- arxiv url: http://arxiv.org/abs/2410.02303v1
- Date: Thu, 3 Oct 2024 08:38:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 04:00:02.758107
- Title: Semantic Communication and Control Co-Design for Multi-Objective Correlated Dynamics
- Title(参考訳): 多目的相関ダイナミクスのための意味コミュニケーションと制御協調設計
- Authors: Abanoub M. Girgis, Hyowoon Seo, Mehdi Bennis,
- Abstract要約: 本稿では,相関システムのセマンティックダイナミクスを学習するための機械学習手法を紹介する。
オートエンコーダ(AE)フレームワークでクープマン演算子を活用することにより、システム状態の進化は潜時空間で線形化される。
信号時相論理(STL)は、システム固有の制御ルールを符号化するために、論理意味論的クープマン(LSK)モデルによって組み込まれている。
- 参考スコア(独自算出の注目度): 33.18378000044136
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This letter introduces a machine-learning approach to learning the semantic dynamics of correlated systems with different control rules and dynamics. By leveraging the Koopman operator in an autoencoder (AE) framework, the system's state evolution is linearized in the latent space using a dynamic semantic Koopman (DSK) model, capturing the baseline semantic dynamics. Signal temporal logic (STL) is incorporated through a logical semantic Koopman (LSK) model to encode system-specific control rules. These models form the proposed logical Koopman AE framework that reduces communication costs while improving state prediction accuracy and control performance, showing a 91.65% reduction in communication samples and significant performance gains in simulation.
- Abstract(参考訳): このレターでは、異なる制御ルールとダイナミックスを持つ相関システムのセマンティックダイナミクスを学習するための機械学習アプローチを紹介する。
オートエンコーダ(AE)フレームワークでクープマン演算子を活用することで、システムの状態進化は動的セマンティッククープマン(DSK)モデルを用いて線形化され、ベースラインセマンティックダイナミクスをキャプチャする。
信号時相論理(STL)は、システム固有の制御ルールを符号化するために、論理意味論的クープマン(LSK)モデルによって組み込まれている。
これらのモデルは、状態予測精度と制御性能を改善しつつ、通信コストを低減し、通信サンプルの91.65%を削減し、シミュレーションにおける大幅な性能向上を示す論理的クープマンAEフレームワークを構成する。
関連論文リスト
- Variational Source-Channel Coding for Semantic Communication [6.55201432222942]
現在の意味コミュニケーションシステムは一般にオートエンコーダ(AE)としてモデル化されている
AEは、チャネルダイナミクスを効果的にキャプチャできないため、コミュニケーション戦略とAI原則の深い統合を欠いている。
本稿では,従来のコミュニケーションとセマンティックコミュニケーションを区別するデータ歪みの包含について検討する。
意味コミュニケーションシステムを構築するために,VSCC法を提案する。
論文 参考訳(メタデータ) (2024-09-26T03:42:05Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
我々は重要セマンティック情報を抽出するために重要地図を活用し、協調的な知覚セマンティックコミュニケーションフレームワークを導入する。
周波数分割多重化(OFDM)とチャネル推定と等化戦略を併用して,時間変化によるマルチパスフェーディングによる課題に対処する。
我々は,ハイブリッド自動繰り返し要求(HARQ)の精神において,我々の意味コミュニケーションフレームワークと統合された新しい意味エラー検出手法を提案する。
論文 参考訳(メタデータ) (2024-08-29T08:53:26Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
本稿では,強化学習に基づくエージェント駆動型ジェネリックセマンティックコミュニケーションフレームワークを提案する。
本研究では, エージェント支援型セマンティックエンコーダを開発し, 適応的セマンティック抽出とサンプリングを行う。
設計モデルの有効性をUA-DETRACデータセットを用いて検証し、全体的なA-GSCフレームワークの性能向上を実証した。
論文 参考訳(メタデータ) (2024-04-10T13:24:27Z) - Temporally-Consistent Koopman Autoencoders for Forecasting Dynamical Systems [42.6886113798806]
テンポラリ一貫性を有するクープマンオートエンコーダ(tcKAE)について紹介する。
tcKAEは、制約付き、ノイズの多いトレーニングデータであっても正確な長期予測を生成する。
我々は,最先端のKAEモデルよりもtcKAEの方が,様々なテストケースで優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-19T00:48:25Z) - A Transition System Abstraction Framework for Neural Network Dynamical
System Models [2.414910571475855]
本稿では,ニューラルネットワーク力学系モデルのためのトランジションシステム抽象化フレームワークを提案する。
このフレームワークは、データ駆動型ニューラルネットワークモデルをトランジションシステムに抽象化し、ニューラルネットワークモデルを解釈可能にする。
論文 参考訳(メタデータ) (2024-02-18T23:49:18Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
そこで本研究では,遅延座標符号化と全状態復号化を組み合わせた汎用モデル構造を提案し,Koopmanモデリングと状態推定を統合した。
ケーススタディでは,本手法が正確な制御モデルを提供し,高純度極低温蒸留塔のリアルタイム非線形予測制御を可能にすることを実証している。
論文 参考訳(メタデータ) (2024-01-09T11:54:54Z) - Reasoning with the Theory of Mind for Pragmatic Semantic Communication [62.87895431431273]
本稿では,実用的な意味コミュニケーションフレームワークを提案する。
2つの知性エージェント間の効果的な目標指向情報共有を可能にする。
数値的な評価は、少ないビット量で効率的な通信を実現するためのフレームワークの能力を示している。
論文 参考訳(メタデータ) (2023-11-30T03:36:19Z) - Graph-Induced Syntactic-Semantic Spaces in Transformer-Based Variational
AutoEncoders [5.037881619912574]
本稿では,トランスフォーマーを用いたVAEにおける構造構文注入のための潜時空間分離法について検討する。
具体的には、グラフベースおよびシーケンシャルモデルの統合により、符号化段階で構文構造をどのように活用するかを検討する。
我々の経験的評価は、自然言語文と数学的表現に基づいて行われ、提案したエンドツーエンドのVAEアーキテクチャにより、潜在空間の全体構造がより良くなることを示している。
論文 参考訳(メタデータ) (2023-11-14T22:47:23Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization [76.68866368409216]
入力に条件付けされた離散化の厳密度を動的に選択する学習を提案する。
コミュニケーションボトルネックの動的に変化する厳密さは、視覚的推論や強化学習タスクにおけるモデル性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-02-02T23:54:26Z) - Relational State-Space Model for Stochastic Multi-Object Systems [24.234120525358456]
本稿では、逐次階層型潜在変数モデルであるリレーショナル状態空間モデル(R-SSM)を紹介する。
R-SSMはグラフニューラルネットワーク(GNN)を用いて、複数の相関オブジェクトの結合状態遷移をシミュレートする。
R-SSMの実用性は、合成および実時間時系列データセットで実証的に評価される。
論文 参考訳(メタデータ) (2020-01-13T03:45:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。