論文の概要: Deep Learning-Based Prediction of Suspension Dynamics Performance in Multi-Axle Vehicles
- arxiv url: http://arxiv.org/abs/2410.02566v1
- Date: Thu, 3 Oct 2024 15:10:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 02:22:08.548203
- Title: Deep Learning-Based Prediction of Suspension Dynamics Performance in Multi-Axle Vehicles
- Title(参考訳): 深層学習に基づく多軸車におけるサスペンションダイナミクス性能の予測
- Authors: Kai Chun Lin, Bo-Yi Lin,
- Abstract要約: 本稿では,多軸車におけるサスペンションシステムの動的性能を予測するためのディープラーニングフレームワークを提案する。
MTL-DBN-DNN(Multi-Task Deep Belief Network Deep Neural Network)を開発した。
- 参考スコア(独自算出の注目度): 0.18416014644193066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a deep learning-based framework for predicting the dynamic performance of suspension systems in multi-axle vehicles, emphasizing the integration of machine learning with traditional vehicle dynamics modeling. A Multi-Task Deep Belief Network Deep Neural Network (MTL-DBN-DNN) was developed to capture the relationships between key vehicle parameters and suspension performance metrics. The model was trained on data generated from numerical simulations and demonstrated superior prediction accuracy compared to conventional DNN models. A comprehensive sensitivity analysis was conducted to assess the impact of various vehicle and suspension parameters on dynamic suspension performance. Additionally, the Suspension Dynamic Performance Index (SDPI) was introduced as a holistic measure to quantify overall suspension performance, accounting for the combined effects of multiple parameters. The findings highlight the effectiveness of multitask learning in improving predictive models for complex vehicle systems.
- Abstract(参考訳): 本稿では,多軸車におけるサスペンションシステムの動的性能を予測するためのディープラーニングベースのフレームワークを提案する。
MTL-DBN-DNN(Multi-Task Deep Belief Network Deep Neural Network)を開発した。
このモデルは数値シミュレーションから生成されたデータに基づいて訓練し、従来のDNNモデルと比較して精度が優れていることを示した。
各種車両およびサスペンションパラメータが動的サスペンション性能に及ぼす影響を評価するため, 総合感度解析を行った。
さらに、サスペンション・ダイナミック・パフォーマンス・インデックス(SDPI)は、総合的なサスペンション・パフォーマンスを定量化するための総合尺度として導入され、複数のパラメータの複合効果を考慮に入れられた。
この結果は,複雑な車両システムにおける予測モデルの改善におけるマルチタスク学習の有効性を浮き彫りにした。
関連論文リスト
- Learning and Current Prediction of PMSM Drive via Differential Neural Networks [13.370017978792479]
本研究では,ディファレンシャルニューラルネットワーク(DNN)を用いた非線形システムのモデル化手法を提案する。
本手法の有効性は, 各種負荷乱れおよび無負荷条件下で行った実験により検証した。
論文 参考訳(メタデータ) (2024-12-12T07:43:27Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
調査は、センサーの故障やノイズなど、様々な摂動を扱うモデルの能力に焦点を当てている。
我々は,これらのモデルの一般化と伝達学習能力を,アウト・オブ・ディストリビューション(OOD)サンプルに公開することによって検証する。
論文 参考訳(メタデータ) (2023-06-13T12:43:59Z) - IDM-Follower: A Model-Informed Deep Learning Method for Long-Sequence
Car-Following Trajectory Prediction [24.94160059351764]
ほとんどの自動車追従モデルは生成的であり、最後のステップの速度、位置、加速度の入力のみを考慮する。
2つの独立したエンコーダと、次の軌道を逐次予測できる自己アテンションデコーダを備えた新しい構造を実装した。
シミュレーションとNGSIMデータセットの複数の設定による数値実験により、IMM-Followerは予測性能を向上させることができることが示された。
論文 参考訳(メタデータ) (2022-10-20T02:24:27Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and
Compliant Impedance Control [16.88250694156719]
剛体力学モデルの物理的に一貫した慣性パラメータを同定できる新しいハイブリッドモデルの定式化を提案する。
7自由度マニピュレータ上での最先端の逆動力学モデルに対する我々のアプローチを比較した。
論文 参考訳(メタデータ) (2022-05-27T07:39:28Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - A Physics-Informed Deep Learning Paradigm for Car-Following Models [3.093890460224435]
物理モデルによるニューラルネットワークに基づくカーフォローモデルの開発を行っています。
2種類のPIDL-CFM問題について検討し,その1つは加速のみを予測し,もう1つは加速のみを予測し,モデルパラメータを発見する。
その結果,無力者よりも物理によって学習されるニューラルネットの性能が向上した。
論文 参考訳(メタデータ) (2020-12-24T18:04:08Z) - Automatic Differentiation and Continuous Sensitivity Analysis of Rigid
Body Dynamics [15.565726546970678]
剛体力学のための微分可能な物理シミュレータを提案する。
軌道最適化の文脈では、閉ループモデル予測制御アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-01-22T03:54:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。