論文の概要: Learning and Current Prediction of PMSM Drive via Differential Neural Networks
- arxiv url: http://arxiv.org/abs/2412.09028v1
- Date: Thu, 12 Dec 2024 07:43:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:30:36.942345
- Title: Learning and Current Prediction of PMSM Drive via Differential Neural Networks
- Title(参考訳): 微分ニューラルネットワークを用いたPMSMドライブの学習と電流予測
- Authors: Wenjie Mei, Xiaorui Wang, Yanrong Lu, Ke Yu, Shihua Li,
- Abstract要約: 本研究では,ディファレンシャルニューラルネットワーク(DNN)を用いた非線形システムのモデル化手法を提案する。
本手法の有効性は, 各種負荷乱れおよび無負荷条件下で行った実験により検証した。
- 参考スコア(独自算出の注目度): 13.370017978792479
- License:
- Abstract: Learning models for dynamical systems in continuous time is significant for understanding complex phenomena and making accurate predictions. This study presents a novel approach utilizing differential neural networks (DNNs) to model nonlinear systems, specifically permanent magnet synchronous motors (PMSMs), and to predict their current trajectories. The efficacy of our approach is validated through experiments conducted under various load disturbances and no-load conditions. The results demonstrate that our method effectively and accurately reconstructs the original systems, showcasing strong short-term and long-term prediction capabilities and robustness. This study provides valuable insights into learning the inherent dynamics of complex dynamical data and holds potential for further applications in fields such as weather forecasting, robotics, and collective behavior analysis.
- Abstract(参考訳): 動的システムの連続的な学習モデルは、複雑な現象を理解し、正確な予測を行うために重要である。
本研究では,非線形系,特に永久磁石同期モータ(PMSM)をモデル化するためのディファレンシャルニューラルネットワーク(DNN)を用いた新しい手法を提案する。
本手法の有効性は, 各種負荷乱れおよび無負荷条件下で行った実験により検証した。
その結果,本手法は,長期・短期の予測能力とロバスト性を示すとともに,本手法を効果的かつ高精度に再現できることが示唆された。
本研究は、複雑な力学データの本質的ダイナミクスの学習に関する貴重な知見を提供し、天気予報、ロボット工学、集団行動解析などの分野におけるさらなる応用の可能性を秘めている。
関連論文リスト
- Learning Spatiotemporal Dynamical Systems from Point Process Observations [7.381752536547389]
現在のニューラルネットワークベースのモデルアプローチは、時間と空間でランダムに収集されるデータに直面したときに不足する。
そこで我々は,このようなプロセス観察から効果的に学習できる新しい手法を開発した。
我々のモデルは、ニューラルディファレンシャル方程式、ニューラルポイントプロセス、暗黙のニューラル表現、そしてアモータライズされた変分推論の技法を統合している。
論文 参考訳(メタデータ) (2024-06-01T09:03:32Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
本稿では,時系列データの非定常および非線形の複雑なダイナミクスを表現した新しい分解力学系モデルを提案する。
我々のモデルは辞書学習によって訓練され、最近の結果を利用してスパースベクトルを時間とともに追跡する。
連続時間と離散時間の両方の指導例において、我々のモデルは元のシステムによく近似できることを示した。
論文 参考訳(メタデータ) (2022-06-07T02:25:38Z) - Learning Fine Scale Dynamics from Coarse Observations via Inner
Recurrence [0.0]
最近の研究は、ディープニューラルネットワーク(DNN)による未知のシステムの進化に関するデータ駆動学習に焦点を当てている。
本稿では,このような粗い観測データから微細な力学を学習するための計算手法を提案する。
論文 参考訳(メタデータ) (2022-06-03T20:28:52Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - Physics-Incorporated Convolutional Recurrent Neural Networks for Source
Identification and Forecasting of Dynamical Systems [10.689157154434499]
本稿では,数値物理学に基づくモデルと深層学習を組み合わせたハイブリッドフレームワークを提案する。
我々は、我々のモデルであるPhICNetを、S時間進化を予測するためのエンドツーエンドのトレーニングが可能な畳み込みリカレントニューラルネットワーク(RNN)として定式化する。
実験結果から,提案モデルが比較的長期間にわたって力学を予測し,情報源も同定できることが示唆された。
論文 参考訳(メタデータ) (2020-04-14T00:27:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。