論文の概要: Compressing multivariate functions with tree tensor networks
- arxiv url: http://arxiv.org/abs/2410.03572v1
- Date: Fri, 4 Oct 2024 16:20:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 21:17:55.388494
- Title: Compressing multivariate functions with tree tensor networks
- Title(参考訳): 木テンソルネットワークによる多変量関数の圧縮
- Authors: Joseph Tindall, Miles Stoudenmire, Ryan Levy,
- Abstract要約: 1次元テンソルネットワークは、連続関数の数値アンザッツとしてますます利用されている。
構造木テンソルネットワークが、一般的に使用されるテンソルトレインよりもはるかに効率的なアンザッツを提供することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tensor networks are a compressed format for multi-dimensional data. One-dimensional tensor networks -- often referred to as tensor trains (TT) or matrix product states (MPS) -- are increasingly being used as a numerical ansatz for continuum functions by "quantizing" the inputs into discrete binary digits. Here we demonstrate the power of more general tree tensor networks for this purpose. We provide direct constructions of a number of elementary functions as generic tree tensor networks and interpolative constructions for more complicated functions via a generalization of the tensor cross interpolation algorithm. For a range of multi-dimensional functions we show how more structured tree tensor networks offer a significantly more efficient ansatz than the commonly used tensor train. We demonstrate an application of our methods to solving multi-dimensional, non-linear Fredholm equations, providing a rigorous bound on the rank of the solution which, in turn, guarantees exponentially scaling accuracy with the size of the tree tensor network for certain problems.
- Abstract(参考訳): テンソルネットワークは多次元データのための圧縮フォーマットである。
1次元テンソルネットワーク - テンソルトレイン (TT) や行列積状態 (MPS) と呼ばれる は、入力を離散二進数に「量子化」することで連続関数の数値アンザッツとして益々使われている。
ここでは、この目的のために、より一般的なツリーテンソルネットワークのパワーを実証する。
一般的な木テンソルネットワークとして多くの基本関数を直接構成し、テンソル交叉補間アルゴリズムの一般化によりより複雑な関数に対する補間構造を提供する。
多次元の関数に対して、一般的に使用されるテンソルトレインよりもはるかに効率的なアンザッツが、より構造化されたツリーテンソルネットワークがどのように提供されるかを示す。
本手法の多次元非線形フレドホルム方程式への応用を実演し、解の階数に厳密な境界を与え、ある問題に対してツリーテンソルネットワークのサイズで指数関数的スケーリング精度を保証する。
関連論文リスト
- One-step replica symmetry breaking in the language of tensor networks [0.913755431537592]
我々は1段階のレプリカ対称性破断空洞法とテンソルネットワークの正確なマッピングを開発する。
この2つのスキームは補足的な数学的および数値的なツールボックスを備えており、芸術のそれぞれの状態を改善するために利用することができる。
論文 参考訳(メタデータ) (2023-06-26T18:42:51Z) - TensorKrowch: Smooth integration of tensor networks in machine learning [46.0920431279359]
PyTorch上に構築されたオープンソースのPythonライブラリであるKrowchを紹介します。
ユーザは任意のテンソルネットワークを構築してトレーニングし、より複雑なディープラーニングモデルにレイヤとして統合することができる。
論文 参考訳(メタデータ) (2023-06-14T15:55:19Z) - Low-Rank Tensor Function Representation for Multi-Dimensional Data
Recovery [52.21846313876592]
低ランクテンソル関数表現(LRTFR)は、無限解像度でメッシュグリッドを超えてデータを連続的に表現することができる。
テンソル関数に対する2つの基本的な概念、すなわちテンソル関数ランクとローランクテンソル関数分解を開発する。
提案手法は,最先端手法と比較して,提案手法の優越性と汎用性を裏付けるものである。
論文 参考訳(メタデータ) (2022-12-01T04:00:38Z) - Tensor networks in machine learning [0.0]
テンソルネットワーク(テンソルネットワーク)は、大規模なデータ配列を表現および近似するために用いられる分解である。
テンソルネットワークと機械学習の融合は自然である。
ここで、ネットワークパラメータを調整して、データセットを学習または分類する。
論文 参考訳(メタデータ) (2022-07-06T18:00:00Z) - Stack operation of tensor networks [10.86105335102537]
本稿では,テンソルネットワークスタックアプローチに対する数学的に厳密な定義を提案する。
本稿では、行列製品状態に基づく機械学習を例として、主なアイデアを例に挙げる。
論文 参考訳(メタデータ) (2022-03-28T12:45:13Z) - Quantum Annealing Algorithms for Boolean Tensor Networks [0.0]
ブールテンソルネットワークのための3つの一般アルゴリズムを導入・解析する。
量子アニーラー上での解法に適した2次非制約二元最適化問題として表すことができる。
我々は、DWave 2000Q量子アニールを用いて、最大数百万個の要素を持つテンソルを効率的に分解できることを実証した。
論文 参考訳(メタデータ) (2021-07-28T22:38:18Z) - Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning [58.14930566993063]
我々は、形式言語と言語学からの重み付き有限オートマトン(WFA)、機械学習で使用されるリカレントニューラルネットワーク、テンソルネットワークの3つのモデル間の接続を提示する。
本稿では,連続ベクトル入力の列上に定義された線形2-RNNに対する最初の証明可能な学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-19T15:28:00Z) - T-Basis: a Compact Representation for Neural Networks [89.86997385827055]
テンソルの集合をコンパクトに表現するための概念である T-Basis をニューラルネットワークでよく見られる任意の形状で導入する。
ニューラルネットワーク圧縮の課題に対する提案手法の評価を行い, 許容性能低下時に高い圧縮速度に達することを示す。
論文 参考訳(メタデータ) (2020-07-13T19:03:22Z) - Approximation with Tensor Networks. Part II: Approximation Rates for
Smoothness Classes [0.0]
滑らか度クラスから関数のテンソルネットワーク(TN)による近似について検討する。
結果として得られるツールは、フィードフォワードニューラルネットワークとして解釈できる。
任意のベソフ関数は最適あるいはほぼ最適な速度で近似できることを示す。
論文 参考訳(メタデータ) (2020-06-30T21:57:42Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Neural Networks are Convex Regularizers: Exact Polynomial-time Convex
Optimization Formulations for Two-layer Networks [70.15611146583068]
我々は、線形整列ユニット(ReLU)を用いた2層ニューラルネットワークのトレーニングの正確な表現を開発する。
我々の理論は半無限双対性と最小ノルム正規化を利用する。
論文 参考訳(メタデータ) (2020-02-24T21:32:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。