論文の概要: One-step replica symmetry breaking in the language of tensor networks
- arxiv url: http://arxiv.org/abs/2306.15004v1
- Date: Mon, 26 Jun 2023 18:42:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-28 15:49:26.040260
- Title: One-step replica symmetry breaking in the language of tensor networks
- Title(参考訳): テンソルネットワークの言語における一段階レプリカ対称性の破れ
- Authors: Nicola Pancotti and Johnnie Gray
- Abstract要約: 我々は1段階のレプリカ対称性破断空洞法とテンソルネットワークの正確なマッピングを開発する。
この2つのスキームは補足的な数学的および数値的なツールボックスを備えており、芸術のそれぞれの状態を改善するために利用することができる。
- 参考スコア(独自算出の注目度): 0.913755431537592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop an exact mapping between the one-step replica symmetry breaking
cavity method and tensor networks. The two schemes come with complementary
mathematical and numerical toolboxes that could be leveraged to improve the
respective states of the art. As an example, we construct a tensor-network
representation of Survey Propagation, one of the best deterministic k-SAT
solvers. The resulting algorithm outperforms any existent tensor-network solver
by several orders of magnitude. We comment on the generality of these ideas,
and we show how to extend them to the context of quantum tensor networks.
- Abstract(参考訳): 我々は1段階のレプリカ対称性破断空洞法とテンソルネットワークの正確なマッピングを開発する。
この2つのスキームは補足的な数学的および数値的なツールボックスを備えており、芸術のそれぞれの状態を改善するために利用することができる。
例えば、最良の決定論的k-SAT解法の一つであるサーベイプロパゲーションのテンソルネットワーク表現を構築する。
結果として得られるアルゴリズムは、既存のテンソルネットワークソルバを数桁上回る。
我々は、これらのアイデアの一般性についてコメントし、それらを量子テンソルネットワークの文脈に拡張する方法を示す。
関連論文リスト
- Compressing multivariate functions with tree tensor networks [0.0]
1次元テンソルネットワークは、連続関数の数値アンザッツとしてますます利用されている。
構造木テンソルネットワークが、一般的に使用されるテンソルトレインよりもはるかに効率的なアンザッツを提供することを示す。
論文 参考訳(メタデータ) (2024-10-04T16:20:52Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Tensor cumulants for statistical inference on invariant distributions [49.80012009682584]
我々は,PCAが信号の大きさの臨界値で計算的に困難になることを示す。
我々は、与えられた次数の不変量に対して明示的でほぼ直交的な基底を与える新しい対象の集合を定義する。
また、異なるアンサンブルを区別する新しい問題も分析できます。
論文 参考訳(メタデータ) (2024-04-29T14:33:24Z) - Fermionic tensor network methods [0.0]
等級ヒルベルト空間を用いて、任意のグラフ上のテンソルネットワークにフェルミオン統計学を自然に組み込む方法を示す。
この形式は、ジョルダン・ウィグナー変換や2次元テンソルネットワークにおけるゲート交換による脚交差の明示的な追跡を回避し、フェルミオン格子系に対するテンソルネットワーク手法を局所的に使用することができる。
論文 参考訳(メタデータ) (2024-04-22T22:22:05Z) - SO(2) and O(2) Equivariance in Image Recognition with
Bessel-Convolutional Neural Networks [63.24965775030674]
この研究はベッセル畳み込みニューラルネットワーク(B-CNN)の開発を示す
B-CNNは、ベッセル関数に基づく特定の分解を利用して、画像とフィルタの間のキー操作を変更する。
他の手法と比較して,B-CNNの性能を評価するために検討を行った。
論文 参考訳(メタデータ) (2023-04-18T18:06:35Z) - Stack operation of tensor networks [10.86105335102537]
本稿では,テンソルネットワークスタックアプローチに対する数学的に厳密な定義を提案する。
本稿では、行列製品状態に基づく機械学習を例として、主なアイデアを例に挙げる。
論文 参考訳(メタデータ) (2022-03-28T12:45:13Z) - Dimension of Tensor Network varieties [68.8204255655161]
テンソルネットワーク多様体の次元上の上限を決定する。
洗練された上界は、行列積状態の多様体や射影絡み合ったペア状態のような応用に関係している場合に与えられる。
論文 参考訳(メタデータ) (2021-01-08T18:24:50Z) - T-Basis: a Compact Representation for Neural Networks [89.86997385827055]
テンソルの集合をコンパクトに表現するための概念である T-Basis をニューラルネットワークでよく見られる任意の形状で導入する。
ニューラルネットワーク圧縮の課題に対する提案手法の評価を行い, 許容性能低下時に高い圧縮速度に達することを示す。
論文 参考訳(メタデータ) (2020-07-13T19:03:22Z) - Riemannian optimization of isometric tensor networks [0.0]
等長線のテンソルネットワークを最適化するために、勾配に基づく最適化手法が、例えば1次元量子ハミルトニアンの基底状態を表すためにどのように用いられるかを示す。
これらの手法を無限MPSとMERAの文脈に適用し、これまでに知られていた最適化手法よりも優れたベンチマーク結果を示す。
論文 参考訳(メタデータ) (2020-07-07T17:19:05Z) - Optimization at the boundary of the tensor network variety [2.1839191255085995]
テンソルネットワーク状態は、量子多体系の研究で広く用いられる変分アンザッツ類を形成する。
最近の研究により、この多様体の境界上の状態は、物理的興味のある状態に対するより効率的な表現をもたらすことが示されている。
局所ハミルトンの基底状態を見つけるために、このクラスを最適化する方法を示す。
論文 参考訳(メタデータ) (2020-06-30T16:58:55Z) - Understanding Graph Neural Networks with Generalized Geometric
Scattering Transforms [67.88675386638043]
散乱変換は、畳み込みニューラルネットワークのモデルとして機能する多層ウェーブレットベースのディープラーニングアーキテクチャである。
非対称ウェーブレットの非常に一般的なクラスに基づくグラフに対して、窓付きおよび非窓付き幾何散乱変換を導入する。
これらの非対称グラフ散乱変換は、対称グラフ散乱変換と多くの理論的保証を持つことを示す。
論文 参考訳(メタデータ) (2019-11-14T17:23:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。