Multi-Step Time Series Inference Agent for Reasoning and Automated Task Execution
- URL: http://arxiv.org/abs/2410.04047v3
- Date: Wed, 12 Feb 2025 00:23:36 GMT
- Title: Multi-Step Time Series Inference Agent for Reasoning and Automated Task Execution
- Authors: Wen Ye, Yizhou Zhang, Wei Yang, Defu Cao, Lumingyuan Tang, Jie Cai, Yan Liu,
- Abstract summary: We propose a novel task: multi-step time series inference that demands both compositional reasoning and precision of time series analysis.<n>By integrating in-context learning, self-correction, and program-aided execution, our proposed approach ensures accurate and interpretable results.
- Score: 19.64976935450366
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Time series analysis is crucial in real-world applications, yet traditional methods focus on isolated tasks only, and recent studies on time series reasoning remain limited to simple, single-step inference constrained to natural language answer. In this work, we propose a practical novel task: multi-step time series inference that demands both compositional reasoning and computation precision of time series analysis. To address such challenge, we propose a simple but effective program-aided inference agent that leverages LLMs' reasoning ability to decompose complex tasks into structured execution pipelines. By integrating in-context learning, self-correction, and program-aided execution, our proposed approach ensures accurate and interpretable results. To benchmark performance, we introduce a new dataset and a unified evaluation framework with task-specific success criteria. Experiments show that our approach outperforms standalone general purpose LLMs in both basic time series concept understanding as well as multi-step time series inference task, highlighting the importance of hybrid approaches that combine reasoning with computational precision.
Related papers
- Learning to Reason Over Time: Timeline Self-Reflection for Improved Temporal Reasoning in Language Models [21.579319926212296]
Large Language Models (LLMs) have emerged as powerful tools for generating coherent text, understanding context, and performing reasoning tasks.
They struggle with temporal reasoning, which requires processing time-related information such as event sequencing, durations, and inter-temporal relationships.
We introduce TISER, a novel framework that enhances the temporal reasoning abilities of LLMs through a multi-stage process that combines timeline construction with iterative self-reflection.
arXiv Detail & Related papers (2025-04-07T16:51:45Z) - Haste Makes Waste: Evaluating Planning Abilities of LLMs for Efficient and Feasible Multitasking with Time Constraints Between Actions [56.88110850242265]
We present Recipe2Plan, a novel benchmark framework based on real-world cooking scenarios.
Unlike conventional benchmarks, Recipe2Plan challenges agents to optimize cooking time through parallel task execution.
arXiv Detail & Related papers (2025-03-04T03:27:02Z) - Multi2: Multi-Agent Test-Time Scalable Framework for Multi-Document Processing [35.686125031177234]
Multi-Document Summarization (MDS) is a challenging task that focuses on extracting and synthesizing useful information from multiple lengthy documents.
We propose a novel framework that leverages inference-time scaling for this task.
We also introduce two new evaluation metrics: Consistency-Aware Preference (CAP) score and LLM Atom-Content-Unit (ACU) score.
arXiv Detail & Related papers (2025-02-27T23:34:47Z) - Inference-Time Computations for LLM Reasoning and Planning: A Benchmark and Insights [49.42133807824413]
We examine the reasoning and planning capabilities of large language models (LLMs) in solving complex tasks.
Recent advances in inference-time techniques demonstrate the potential to enhance LLM reasoning without additional training.
OpenAI's o1 model shows promising performance through its novel use of multi-step reasoning and verification.
arXiv Detail & Related papers (2025-02-18T04:11:29Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
We propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Agentic Retrieval-Augmented Generation for Time Series Analysis [0.0]
We propose a novel agentic Retrieval-Augmented Generation framework for time series analysis.
Our proposed modular multi-agent RAG approach offers flexibility and achieves more state-of-the-art performance across major time series tasks.
arXiv Detail & Related papers (2024-08-18T11:47:55Z) - Unleash The Power of Pre-Trained Language Models for Irregularly Sampled Time Series [22.87452807636833]
This work explores the potential of PLMs for ISTS analysis.
We present a unified PLM-based framework, ISTS-PLM, which integrates time-aware and variable-aware PLMs for comprehensive intra and inter-time series modeling.
arXiv Detail & Related papers (2024-08-12T14:22:14Z) - Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
Time series data is of great significance in real-world scenarios.
Recent years have witnessed remarkable breakthroughs in the time series community.
We release Time Series Library (TSLib) as a fair benchmark of deep time series models for diverse analysis tasks.
arXiv Detail & Related papers (2024-07-18T08:31:55Z) - TemPrompt: Multi-Task Prompt Learning for Temporal Relation Extraction in RAG-based Crowdsourcing Systems [21.312052922118585]
Temporal relation extraction (TRE) aims to grasp the evolution of events or actions, and thus shape the workflow of associated tasks.
We propose a multi-task prompt learning framework for TRE (TemPrompt), incorporating prompt tuning and contrastive learning to tackle these issues.
arXiv Detail & Related papers (2024-06-21T01:52:37Z) - UniCL: A Universal Contrastive Learning Framework for Large Time Series Models [18.005358506435847]
Time-series analysis plays a pivotal role across a range of critical applications, from finance to healthcare.
Traditional supervised learning methods first annotate extensive labels for time-series data in each task.
This paper introduces UniCL, a universal and scalable contrastive learning framework designed for pretraining time-series foundation models.
arXiv Detail & Related papers (2024-05-17T07:47:11Z) - A Survey of Time Series Foundation Models: Generalizing Time Series Representation with Large Language Model [33.17908422599714]
Large language foundation models have unveiled their capabilities for cross-task transferability, zero-shot/few-shot learning, and decision-making explainability.
There are two main research lines, namely pre-training foundation models from scratch for time series and adapting large language foundation models for time series.
This survey offers a 3E analytical framework for comprehensive examination of related research.
arXiv Detail & Related papers (2024-05-03T03:12:55Z) - Position: What Can Large Language Models Tell Us about Time Series Analysis [69.70906014827547]
We argue that current large language models (LLMs) have the potential to revolutionize time series analysis.
Such advancement could unlock a wide range of possibilities, including time series modality switching and question answering.
arXiv Detail & Related papers (2024-02-05T04:17:49Z) - How Many Pretraining Tasks Are Needed for In-Context Learning of Linear Regression? [92.90857135952231]
Transformers pretrained on diverse tasks exhibit remarkable in-context learning (ICL) capabilities.
We study ICL in one of its simplest setups: pretraining a linearly parameterized single-layer linear attention model for linear regression.
arXiv Detail & Related papers (2023-10-12T15:01:43Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z) - TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [57.4208255711412]
Building on copula theory, we propose a simplified objective for the recently-introduced transformer-based attentional copulas (TACTiS)
We show that the resulting model has significantly better training dynamics and achieves state-of-the-art performance across diverse real-world forecasting tasks.
arXiv Detail & Related papers (2023-10-02T16:45:19Z) - Feature Programming for Multivariate Time Series Prediction [7.0220697993232]
We introduce the concept of programmable feature engineering for time series modeling.
We propose a feature programming framework that generates large amounts of predictive features for noisy time series.
arXiv Detail & Related papers (2023-06-09T20:46:55Z) - Unlocking Temporal Question Answering for Large Language Models with Tailor-Made Reasoning Logic [84.59255070520673]
Large language models (LLMs) face a challenge when engaging in temporal reasoning.
We propose TempLogic, a novel framework designed specifically for temporal question-answering tasks.
arXiv Detail & Related papers (2023-05-24T10:57:53Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
We propose a new satisfiability-aided language modeling (SatLM) approach for improving the reasoning capabilities of large language models (LLMs)
We use an LLM to generate a declarative task specification rather than an imperative program and leverage an off-the-shelf automated theorem prover to derive the final answer.
We evaluate SATLM on 8 different datasets and show that it consistently outperforms program-aided LMs in the imperative paradigm.
arXiv Detail & Related papers (2023-05-16T17:55:51Z) - In Defense of the Unitary Scalarization for Deep Multi-Task Learning [121.76421174107463]
We present a theoretical analysis suggesting that many specialized multi-tasks can be interpreted as forms of regularization.
We show that, when coupled with standard regularization and stabilization techniques, unitary scalarization matches or improves upon the performance of complex multitasks.
arXiv Detail & Related papers (2022-01-11T18:44:17Z) - Multi-Task Learning with Sequence-Conditioned Transporter Networks [67.57293592529517]
We aim to solve multi-task learning through the lens of sequence-conditioning and weighted sampling.
We propose a new suite of benchmark aimed at compositional tasks, MultiRavens, which allows defining custom task combinations.
Second, we propose a vision-based end-to-end system architecture, Sequence-Conditioned Transporter Networks, which augments Goal-Conditioned Transporter Networks with sequence-conditioning and weighted sampling.
arXiv Detail & Related papers (2021-09-15T21:19:11Z) - Multi-Task Time Series Forecasting With Shared Attention [15.294939035413217]
We propose two self-attention based sharing schemes for multi-task time series forecasting.
Our proposed architectures can not only outperform the state-of-the-art single-task forecasting baselines but also outperform the RNN-based multi-task forecasting method.
arXiv Detail & Related papers (2021-01-24T04:25:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.