Multi-Step Time Series Inference Agent for Reasoning and Automated Task Execution
- URL: http://arxiv.org/abs/2410.04047v3
- Date: Wed, 12 Feb 2025 00:23:36 GMT
- Title: Multi-Step Time Series Inference Agent for Reasoning and Automated Task Execution
- Authors: Wen Ye, Yizhou Zhang, Wei Yang, Defu Cao, Lumingyuan Tang, Jie Cai, Yan Liu,
- Abstract summary: We propose a novel task: multi-step time series inference that demands both compositional reasoning and precision of time series analysis.
By integrating in-context learning, self-correction, and program-aided execution, our proposed approach ensures accurate and interpretable results.
- Score: 19.64976935450366
- License:
- Abstract: Time series analysis is crucial in real-world applications, yet traditional methods focus on isolated tasks only, and recent studies on time series reasoning remain limited to simple, single-step inference constrained to natural language answer. In this work, we propose a practical novel task: multi-step time series inference that demands both compositional reasoning and computation precision of time series analysis. To address such challenge, we propose a simple but effective program-aided inference agent that leverages LLMs' reasoning ability to decompose complex tasks into structured execution pipelines. By integrating in-context learning, self-correction, and program-aided execution, our proposed approach ensures accurate and interpretable results. To benchmark performance, we introduce a new dataset and a unified evaluation framework with task-specific success criteria. Experiments show that our approach outperforms standalone general purpose LLMs in both basic time series concept understanding as well as multi-step time series inference task, highlighting the importance of hybrid approaches that combine reasoning with computational precision.
Related papers
- Inference-Time Computations for LLM Reasoning and Planning: A Benchmark and Insights [49.42133807824413]
We examine the reasoning and planning capabilities of large language models (LLMs) in solving complex tasks.
Recent advances in inference-time techniques demonstrate the potential to enhance LLM reasoning without additional training.
OpenAI's o1 model shows promising performance through its novel use of multi-step reasoning and verification.
arXiv Detail & Related papers (2025-02-18T04:11:29Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
We propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Unleash The Power of Pre-Trained Language Models for Irregularly Sampled Time Series [22.87452807636833]
This work explores the potential of PLMs for ISTS analysis.
We present a unified PLM-based framework, ISTS-PLM, which integrates time-aware and variable-aware PLMs for comprehensive intra and inter-time series modeling.
arXiv Detail & Related papers (2024-08-12T14:22:14Z) - TemPrompt: Multi-Task Prompt Learning for Temporal Relation Extraction in RAG-based Crowdsourcing Systems [21.312052922118585]
Temporal relation extraction (TRE) aims to grasp the evolution of events or actions, and thus shape the workflow of associated tasks.
We propose a multi-task prompt learning framework for TRE (TemPrompt), incorporating prompt tuning and contrastive learning to tackle these issues.
arXiv Detail & Related papers (2024-06-21T01:52:37Z) - How Many Pretraining Tasks Are Needed for In-Context Learning of Linear Regression? [92.90857135952231]
Transformers pretrained on diverse tasks exhibit remarkable in-context learning (ICL) capabilities.
We study ICL in one of its simplest setups: pretraining a linearly parameterized single-layer linear attention model for linear regression.
arXiv Detail & Related papers (2023-10-12T15:01:43Z) - Tree-of-Mixed-Thought: Combining Fast and Slow Thinking for Multi-hop
Visual Reasoning [16.495754104540605]
Large language models (LLMs) can generate code-like plans for complex inference tasks such as visual reasoning.
We propose a hierarchical plan-searching algorithm that integrates the one-stop reasoning (fast) and the Tree-of-thought (slow)
arXiv Detail & Related papers (2023-08-18T16:21:40Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
We propose a new satisfiability-aided language modeling (SatLM) approach for improving the reasoning capabilities of large language models (LLMs)
We use an LLM to generate a declarative task specification rather than an imperative program and leverage an off-the-shelf automated theorem prover to derive the final answer.
We evaluate SATLM on 8 different datasets and show that it consistently outperforms program-aided LMs in the imperative paradigm.
arXiv Detail & Related papers (2023-05-16T17:55:51Z) - In Defense of the Unitary Scalarization for Deep Multi-Task Learning [121.76421174107463]
We present a theoretical analysis suggesting that many specialized multi-tasks can be interpreted as forms of regularization.
We show that, when coupled with standard regularization and stabilization techniques, unitary scalarization matches or improves upon the performance of complex multitasks.
arXiv Detail & Related papers (2022-01-11T18:44:17Z) - Robust Learning Through Cross-Task Consistency [92.42534246652062]
We propose a broadly applicable and fully computational method for augmenting learning with Cross-Task Consistency.
We observe that learning with cross-task consistency leads to more accurate predictions and better generalization to out-of-distribution inputs.
arXiv Detail & Related papers (2020-06-07T09:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.