論文の概要: Scaling Laws for Mixed quantization in Large Language Models
- arxiv url: http://arxiv.org/abs/2410.06722v1
- Date: Wed, 9 Oct 2024 09:45:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 04:00:11.262680
- Title: Scaling Laws for Mixed quantization in Large Language Models
- Title(参考訳): 大規模言語モデルにおける混合量子化のスケーリング法則
- Authors: Zeyu Cao, Cheng Zhang, Pedro Gimenes, Jianqiao Lu, Jianyi Cheng, Yiren Zhao,
- Abstract要約: 大規模言語モデル(LLM)の学習後の量子化は、これらのモデルで推論を実行する際の計算量の削減に有効であることが証明されている。
本研究では,低精度量子化のための特定の精度やパープレキシティターゲットを目指している場合,LLMを大規模化する際に,高い精度の数値や計算がいくつ必要か,という簡単な問題に焦点をあてる。
- 参考スコア(独自算出の注目度): 10.912306313183972
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Post-training quantization of Large Language Models (LLMs) has proven effective in reducing the computational requirements for running inference on these models. In this study, we focus on a straightforward question: When aiming for a specific accuracy or perplexity target for low-precision quantization, how many high-precision numbers or calculations are required to preserve as we scale LLMs to larger sizes? We first introduce a critical metric named the quantization ratio, which compares the number of parameters quantized to low-precision arithmetic against the total parameter count. Through extensive and carefully controlled experiments across different model families, arithmetic types, and quantization granularities (e.g. layer-wise, matmul-wise), we identify two central phenomenons. 1) The larger the models, the better they can preserve performance with an increased quantization ratio, as measured by perplexity in pre-training tasks or accuracy in downstream tasks. 2) The finer the granularity of mixed-precision quantization (e.g., matmul-wise), the more the model can increase the quantization ratio. We believe these observed phenomena offer valuable insights for future AI hardware design and the development of advanced Efficient AI algorithms.
- Abstract(参考訳): 大規模言語モデル(LLM)の学習後の量子化は、これらのモデルで推論を実行する際の計算量の削減に有効であることが証明されている。
本研究では,低精度量子化のための特定の精度やパープレキシティターゲットを目指している場合,LLMをより大きなサイズにスケールする際に,高い精度の数値や計算がいくつ必要か,という簡単な質問に焦点をあてる。
まず、量子化比(quantization ratio)と呼ばれる臨界測度を導入し、量子化されたパラメータの数を、全パラメータ数と比較して、低精度の算術演算と比較する。
異なるモデル族、算術型、量子化の粒度(例えば、層単位で、行列的に)にわたる広範囲かつ慎重に制御された実験を通して、2つの中心的な現象を同定する。
1) 事前学習タスクの難易度や下流タスクの精度によって測定されるように, モデルが大きいほど, 量子化率の向上による性能の維持が図られる。
2) 混合精密量子化の粒度が微細になるほど, モデルの量子化比が増大する。
これらの観測された現象は、将来のAIハードウェア設計と高度なAIアルゴリズムの開発に貴重な洞察を与えると信じている。
関連論文リスト
- GWQ: Gradient-Aware Weight Quantization for Large Language Models [61.17678373122165]
勾配対応重み量子化(GWQ)は、勾配を利用して外れ値の局所化を行う、低ビット重み量子化のための最初の量子化手法である。
GWQはFP16精度で上位1%の外れ値に対応し、残りの非外れ値重みは低ビットフォーマットで格納される。
ゼロショットタスクでは、GWQ量子化モデルは他の量子化法よりも精度が高い。
論文 参考訳(メタデータ) (2024-10-30T11:16:04Z) - AlignedKV: Reducing Memory Access of KV-Cache with Precision-Aligned Quantization [5.572159724234467]
混合精度量子化は重要なパラメータと重要でないパラメータを区別する。
既存の手法は定性的分析と手動実験によってのみ重要なパラメータを識別できる。
本稿では,パラメータの重要性を総合的に評価する定量的枠組みを構築するために,いわゆる「精度アライメント」という新しい基準を提案する。
論文 参考訳(メタデータ) (2024-09-25T01:39:02Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
鍵圧縮技術である量子化は、大きな言語モデルを圧縮し、加速することにより、これらの要求を効果的に軽減することができる。
本稿では,プラグアンドプレイ圧縮ツールキットであるLLMCについて,量子化の影響を公平かつ体系的に検討する。
この汎用ツールキットによって、我々のベンチマークはキャリブレーションデータ、アルゴリズム(3つの戦略)、データフォーマットの3つの重要な側面をカバーしています。
論文 参考訳(メタデータ) (2024-05-09T11:49:05Z) - PikeLPN: Mitigating Overlooked Inefficiencies of Low-Precision Neural Networks [4.827161693957252]
非量子化要素演算は、低精度モデルの推論コストを支配している。
PikeLPNモデルは、要素演算と乗算累積演算の両方に量子化を適用することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2024-03-29T18:23:34Z) - WKVQuant: Quantizing Weight and Key/Value Cache for Large Language
Models Gains More [55.0856305773081]
大規模言語モデル (LLM) は、そのメモリ要求と自動回帰テキスト生成プロセスの計算要求のために、重要なデプロイメント課題に直面している。
本稿では、モデルパラメータとアクティベーションを低ビット整数に変換することでメモリ消費を低減する手法であるLCMの量子化に着目し、これらの課題に対処する。
論文 参考訳(メタデータ) (2024-02-19T11:33:21Z) - Effect of Weight Quantization on Learning Models by Typical Case
Analysis [6.9060054915724]
最近のデータ分析スケールの急増は、計算リソースの要求を大幅に増加させた。
量子化は、限られた計算資源を持つデバイスに大規模なモデルをデプロイするのに不可欠である。
論文 参考訳(メタデータ) (2024-01-30T18:58:46Z) - Zero-Shot Sharpness-Aware Quantization for Pre-trained Language Models [88.80146574509195]
量子化は、メモリオーバーヘッドを減らし、推論を加速するための有望なアプローチである。
種々のPLMのゼロショット量子化のための新しい量子化(ZSAQ)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-20T07:09:56Z) - MixQuant: Mixed Precision Quantization with a Bit-width Optimization
Search [7.564770908909927]
量子化は、効率的なディープニューラルネットワーク(DNN)を作成する技術である
ラウンドオフ誤差に基づいて各層重みに対する最適な量子化ビット幅を求める検索アルゴリズムであるMixQuantを提案する。
我々は、MixQuantと最先端の量子化手法BRECQを組み合わせることで、BRECQ単独よりも優れた量子化モデル精度が得られることを示す。
論文 参考訳(メタデータ) (2023-09-29T15:49:54Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - PreQuant: A Task-agnostic Quantization Approach for Pre-trained Language
Models [52.09865918265002]
ファインチューニングのフレームワークPreQuantに先立って,新しい量子化を提案する。
PreQuantは様々な量子化戦略と互換性があり、インダクションされた量子化誤差を修正するために、アウタリア対応の微調整が組み込まれている。
BERT,RoBERTa,T5を用いたGLUEベンチマークにおけるPreQuantの有効性を示す。
論文 参考訳(メタデータ) (2023-05-30T08:41:33Z) - An Investigation on Different Underlying Quantization Schemes for
Pre-trained Language Models [33.49417100179159]
我々はk平均量子化を実装し、BERTの固定精度量子化と線形量子化の性能を比較する。
また、ALBERTモデル上の2つの量子化スキームを比較し、異なる事前学習モデル間のロバスト性差を探索する。
論文 参考訳(メタデータ) (2020-10-14T14:05:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。