論文の概要: Scaling Laws For Mixed Qquantization
- arxiv url: http://arxiv.org/abs/2410.06722v2
- Date: Sun, 15 Jun 2025 15:28:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:44.892634
- Title: Scaling Laws For Mixed Qquantization
- Title(参考訳): 混合量子化のためのスケーリング法則
- Authors: Zeyu Cao, Boyang Gu, Cheng Zhang, Pedro Gimenes, Jianqiao Lu, Jianyi Cheng, Xitong Gao, Yiren Zhao,
- Abstract要約: 大規模言語モデル(LLM)の学習後の量子化は、推論のメモリと計算要求を減らすのに有効であることが証明されている。
量子化比(Q_r$)と量子化ブロックサイズ(Q_b$)という2つの重要な指標を導入する。
本稿では,学習後量子化(PTQ)に関する統一的なスケーリング法則を提案する。
- 参考スコア(独自算出の注目度): 14.27345780977423
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Post-training quantization of Large Language Models (LLMs) has proven effective in reducing the memory and computational requirements for inference. In this study, we focus on a straightforward question: When aiming for a target accuracy or perplexity with low-precision quantization, how much high-precision computation needs to be preserved and how fine-grained this quantization would need to be as we scale LLMs to larger sizes? We first introduce two critical metrics named the quantization ratio ($Q_r$) and quantization block size ($Q_b$). The former measures the number of parameters quantized to low-precision arithmetic normalized by the total parameter count, whereas the latter defines the number of values within a block that share a scaling factor, akin to the block size concept introduced in the FP4 format in NVIDIA's Blackwell architecture. Through extensive and carefully controlled experiments across different model and quantization methods, we propose a unified scaling law on post-training quantization (PTQ) that can predict loss degeneration for varying $Q_r$ and $Q_b$. For $Q_r$, our scaling law implies that parameter scaling and ratio scaling have a multiplicative relationship. Consequently, larger models are more amenable to a higher quantization ratio $Q_r$, thus supporting an increase in the adoption of mixed quantization for inference. Regarding $Q_b$, our findings indicate that a small block size, similar to that used in Blackwell, is not essential for large models. Employing a small $Q_b$ can instead unnecessarily complicate the design of the hardware circuit.
- Abstract(参考訳): 大規模言語モデル(LLM)の学習後の量子化は、推論のメモリと計算要求を減らすのに有効であることが証明されている。
本研究では、低精度量子化による目標精度やパープレキシティの実現を目指す場合、どの程度の高精度な計算を保存する必要があるか、そして、この量子化がLLMをより大きなサイズにスケールする際にどの程度の微細化が必要か、という単純な問いに焦点をあてる。
まず、量子化比(Q_r$)と量子化ブロックサイズ(Q_b$)という2つの重要な指標を紹介する。
前者は、合計パラメータ数によって正規化された低精度算術に量子化されたパラメータの数を測定するが、後者は、NVIDIAのBlackwellアーキテクチャで導入されたFP4フォーマットで導入されたブロックサイズの概念と同様に、スケーリング係数を共有するブロック内の値の数を定義する。
異なるモデルおよび量子化法をまたいだ広範囲かつ慎重に制御された実験を通して、様々な$Q_r$と$Q_b$の損失退縮を予測できるPTQ(Post-training Quantization)の統一スケーリング法則を提案する。
Q_r$の場合、我々のスケーリング法則はパラメータのスケーリングと比のスケーリングが乗法的関係を持つことを示している。
その結果、より大きなモデルではより高い量子化比が$Q_r$となるため、推論への混合量子化の導入が増加する。
Q_b$については、Blackwellで使われているような小さなブロックサイズは、大規模なモデルでは必須ではないことを示す。
少額のQ_b$を使用すると、ハードウェア回路の設計が複雑になる。
関連論文リスト
- FineQ: Software-Hardware Co-Design for Low-Bit Fine-Grained Mixed-Precision Quantization of LLMs [13.951330786310262]
FineQは、ソフトウェアとハードウェアの共同設計であり、大規模言語モデルの低ビット細粒度混合精度量子化のための設計である。
重みをよりきめ細かいクラスタに分割し、これらのクラスタ内の外れ値の分布を考慮する。
近似平均ビット幅でのSOTA混合精度量子化アルゴリズムと比較してモデル精度が向上する。
論文 参考訳(メタデータ) (2025-04-28T12:47:23Z) - Compute-Optimal LLMs Provably Generalize Better With Scale [102.29926217670926]
我々は,大規模言語モデル(LLM)の事前学習目標に基づく一般化境界を開発する。
損失関数の分散を考慮し, 既存の境界を緩める, 完全経験的フリードマン型マルティンゲール濃度を導入する。
我々は一般化ギャップのスケーリング法則を作成し、その境界はスケールによって予測的に強くなる。
論文 参考訳(メタデータ) (2025-04-21T16:26:56Z) - Enhancing Ultra-Low-Bit Quantization of Large Language Models Through Saliency-Aware Partial Retraining [0.0]
トレーニング後の量子化は、精度の低下を犠牲にして、モデルサイズを効率的に削減する。
量子化学習(quantization-aware training)は、精度を向上するが、リソース集約である。
本稿では,ApiQ上に構築した超低ビット量子化手法を提案する。
論文 参考訳(メタデータ) (2025-04-14T19:31:21Z) - Quantization Hurts Reasoning? An Empirical Study on Quantized Reasoning Models [48.98109982725689]
我々は、オープンソースのDeepSeek-R1-Distilled QwenおよびLLaMAファミリーを評価し、量子化推論モデルに関する最初の体系的研究を行う。
本研究は,様々なビット幅の最先端アルゴリズムを用いて,重み,KVキャッシュ,アクティベーション量子化について検討する。
モデルのサイズ、モデルの起源、タスクの難しさを、パフォーマンスの重要な決定要因とみなす。
論文 参考訳(メタデータ) (2025-04-07T08:22:45Z) - RSQ: Learning from Important Tokens Leads to Better Quantized LLMs [65.5558181902098]
レイヤーワイド量子化は、高価なリトレーニングなしで大きなモデルを効率的に圧縮するための重要な技術である。
モデルに回転を適用して外乱を緩和するRSQ(Rotate, Scale, then Quantize)を提案する。
RSQは、複数の下流タスクと3つのモデルファミリーで、ベースラインメソッドを一貫して上回っていることを実証する。
論文 参考訳(メタデータ) (2025-03-03T18:46:33Z) - GWQ: Gradient-Aware Weight Quantization for Large Language Models [61.17678373122165]
勾配対応重み量子化(GWQ)は、勾配を利用して外れ値の局所化を行う、低ビット重み量子化のための最初の量子化手法である。
GWQはFP16精度で上位1%の外れ値に対応し、残りの非外れ値重みは低ビットフォーマットで格納される。
ゼロショットタスクでは、GWQ量子化モデルは他の量子化法よりも精度が高い。
論文 参考訳(メタデータ) (2024-10-30T11:16:04Z) - AlignedKV: Reducing Memory Access of KV-Cache with Precision-Aligned Quantization [5.572159724234467]
混合精度量子化は重要なパラメータと重要でないパラメータを区別する。
既存の手法は定性的分析と手動実験によってのみ重要なパラメータを識別できる。
本稿では,パラメータの重要性を総合的に評価する定量的枠組みを構築するために,いわゆる「精度アライメント」という新しい基準を提案する。
論文 参考訳(メタデータ) (2024-09-25T01:39:02Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
鍵圧縮技術である量子化は、大きな言語モデルを圧縮し、加速することにより、これらの要求を効果的に軽減することができる。
本稿では,プラグアンドプレイ圧縮ツールキットであるLLMCについて,量子化の影響を公平かつ体系的に検討する。
この汎用ツールキットによって、我々のベンチマークはキャリブレーションデータ、アルゴリズム(3つの戦略)、データフォーマットの3つの重要な側面をカバーしています。
論文 参考訳(メタデータ) (2024-05-09T11:49:05Z) - PikeLPN: Mitigating Overlooked Inefficiencies of Low-Precision Neural Networks [4.827161693957252]
非量子化要素演算は、低精度モデルの推論コストを支配している。
PikeLPNモデルは、要素演算と乗算累積演算の両方に量子化を適用することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2024-03-29T18:23:34Z) - WKVQuant: Quantizing Weight and Key/Value Cache for Large Language
Models Gains More [55.0856305773081]
大規模言語モデル (LLM) は、そのメモリ要求と自動回帰テキスト生成プロセスの計算要求のために、重要なデプロイメント課題に直面している。
本稿では、モデルパラメータとアクティベーションを低ビット整数に変換することでメモリ消費を低減する手法であるLCMの量子化に着目し、これらの課題に対処する。
論文 参考訳(メタデータ) (2024-02-19T11:33:21Z) - Effect of Weight Quantization on Learning Models by Typical Case
Analysis [6.9060054915724]
最近のデータ分析スケールの急増は、計算リソースの要求を大幅に増加させた。
量子化は、限られた計算資源を持つデバイスに大規模なモデルをデプロイするのに不可欠である。
論文 参考訳(メタデータ) (2024-01-30T18:58:46Z) - Zero-Shot Sharpness-Aware Quantization for Pre-trained Language Models [88.80146574509195]
量子化は、メモリオーバーヘッドを減らし、推論を加速するための有望なアプローチである。
種々のPLMのゼロショット量子化のための新しい量子化(ZSAQ)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-20T07:09:56Z) - MixQuant: Mixed Precision Quantization with a Bit-width Optimization
Search [7.564770908909927]
量子化は、効率的なディープニューラルネットワーク(DNN)を作成する技術である
ラウンドオフ誤差に基づいて各層重みに対する最適な量子化ビット幅を求める検索アルゴリズムであるMixQuantを提案する。
我々は、MixQuantと最先端の量子化手法BRECQを組み合わせることで、BRECQ単独よりも優れた量子化モデル精度が得られることを示す。
論文 参考訳(メタデータ) (2023-09-29T15:49:54Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - PreQuant: A Task-agnostic Quantization Approach for Pre-trained Language
Models [52.09865918265002]
ファインチューニングのフレームワークPreQuantに先立って,新しい量子化を提案する。
PreQuantは様々な量子化戦略と互換性があり、インダクションされた量子化誤差を修正するために、アウタリア対応の微調整が組み込まれている。
BERT,RoBERTa,T5を用いたGLUEベンチマークにおけるPreQuantの有効性を示す。
論文 参考訳(メタデータ) (2023-05-30T08:41:33Z) - An Investigation on Different Underlying Quantization Schemes for
Pre-trained Language Models [33.49417100179159]
我々はk平均量子化を実装し、BERTの固定精度量子化と線形量子化の性能を比較する。
また、ALBERTモデル上の2つの量子化スキームを比較し、異なる事前学習モデル間のロバスト性差を探索する。
論文 参考訳(メタデータ) (2020-10-14T14:05:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。