Unleashing Multi-Hop Reasoning Potential in Large Language Models through Repetition of Misordered Context
- URL: http://arxiv.org/abs/2410.07103v1
- Date: Wed, 9 Oct 2024 17:41:53 GMT
- Title: Unleashing Multi-Hop Reasoning Potential in Large Language Models through Repetition of Misordered Context
- Authors: Sangwon Yu, Ik-hwan Kim, Jongyoon Song, Saehyung Lee, Junsung Park, Sungroh Yoon,
- Abstract summary: We propose a simple yet effective method called context repetition (CoRe)
CoRe involves prompting the model by repeatedly presenting the context to ensure the supporting documents are presented in the optimal order for the model.
We improve the F1 score by up to 30%p on multi-hop QA tasks and increase accuracy by up to 70%p on a synthetic task.
- Score: 31.091013417498825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-hop reasoning, which requires multi-step reasoning based on the supporting documents within a given context, remains challenging for large language models (LLMs). LLMs often struggle to filter out irrelevant documents within the context, and their performance is sensitive to the position of supporting documents within that context. In this paper, we identify an additional challenge: LLMs' performance is also sensitive to the order in which the supporting documents are presented. We refer to this as the misordered context problem. To address this issue, we propose a simple yet effective method called context repetition (CoRe), which involves prompting the model by repeatedly presenting the context to ensure the supporting documents are presented in the optimal order for the model. Using CoRe, we improve the F1 score by up to 30%p on multi-hop QA tasks and increase accuracy by up to 70%p on a synthetic task. Additionally, CoRe helps mitigate the well-known "lost-in-the-middle" problem in LLMs and can be effectively combined with retrieval-based approaches utilizing Chain-of-Thought (CoT) reasoning.
Related papers
- MM-Embed: Universal Multimodal Retrieval with Multimodal LLMs [78.5013630951288]
This paper introduces techniques for advancing information retrieval with multimodal large language models (MLLMs)
We first study fine-tuning an MLLM as a bi-encoder retriever on 10 datasets with 16 retrieval tasks.
We propose modality-aware hard negative mining to mitigate the modality bias exhibited by MLLM retrievers.
arXiv Detail & Related papers (2024-11-04T20:06:34Z) - Zero-Shot Dense Retrieval with Embeddings from Relevance Feedback [17.986392250269606]
We introduce Real Document Embeddings from Relevance Feedback (ReDE-RF)
Inspired by relevance feedback, ReDE-RF proposes to re-frame hypothetical document generation as a relevance estimation task.
Our experiments show that ReDE-RF consistently surpasses state-of-the-art zero-shot dense retrieval methods.
arXiv Detail & Related papers (2024-10-28T17:40:40Z) - FACT: Examining the Effectiveness of Iterative Context Rewriting for Multi-fact Retrieval [20.217386507637475]
Large Language Models (LLMs) are proficient at retrieving single facts from extended contexts, yet struggle with tasks requiring the simultaneous retrieval of multiple facts.
This paper identifies a novel "lost-in-the-middle" phenomenon, where LLMs progressively lose track of critical information throughout the generation process.
We introduce Find All Crucial Texts (FACT), an iterative retrieval method that refines context through successive rounds of rewriting.
arXiv Detail & Related papers (2024-10-28T13:36:41Z) - Layer-of-Thoughts Prompting (LoT): Leveraging LLM-Based Retrieval with Constraint Hierarchies [0.3946282433423277]
Layer-of-Thoughts Prompting (LoT) uses constraint hierarchies to filter and refine candidate responses to a given query.
LoT significantly improves the accuracy and comprehensibility of information retrieval tasks.
arXiv Detail & Related papers (2024-10-16T01:20:44Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.
We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.
Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - R4: Reinforced Retriever-Reorder-Responder for Retrieval-Augmented Large Language Models [32.598670876662375]
Retrieval-augmented large language models (LLMs) leverage relevant content retrieved by information retrieval systems to generate correct responses.
Existing retriever-responder methods typically append relevant documents to the prompt of LLMs to perform text generation tasks.
We propose a new pipeline named "Reinforced Retriever-Reorder-Responder" to learn document orderings for retrieval-augmented LLMs.
arXiv Detail & Related papers (2024-05-04T12:59:10Z) - Analyzing the Role of Semantic Representations in the Era of Large Language Models [104.18157036880287]
We investigate the role of semantic representations in the era of large language models (LLMs)
We propose an AMR-driven chain-of-thought prompting method, which we call AMRCoT.
We find that it is difficult to predict which input examples AMR may help or hurt on, but errors tend to arise with multi-word expressions.
arXiv Detail & Related papers (2024-05-02T17:32:59Z) - Q-PEFT: Query-dependent Parameter Efficient Fine-tuning for Text Reranking with Large Language Models [28.105271954633682]
We introduce a query-dependent parameter efficient fine-tuning (Q-PEFT) approach for text reranking to leak information to Large Language Models (LLMs)
We utilize the query to extract the top-$k$ tokens from input documents, serving as contextual clues.
We further augment Q-PEFT by substituting the retrieval mechanism with a multi-head attention layer to achieve end-to-end training and cover all the tokens in the documents.
arXiv Detail & Related papers (2024-04-06T06:44:41Z) - Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves [57.974103113675795]
We present a method named Rephrase and Respond' (RaR) which allows Large Language Models to rephrase and expand questions posed by humans.
RaR serves as a simple yet effective prompting method for improving performance.
We show that RaR is complementary to the popular Chain-of-Thought (CoT) methods, both theoretically and empirically.
arXiv Detail & Related papers (2023-11-07T18:43:34Z) - Self-prompted Chain-of-Thought on Large Language Models for Open-domain
Multi-hop Reasoning [70.74928578278957]
In open-domain question-answering (ODQA), most existing questions require single-hop reasoning on commonsense.
Large language models (LLMs) have found significant utility in facilitating ODQA without external corpus.
We propose Self-prompted Chain-of-Thought (SP-CoT), an automated framework to mass-produce high quality CoTs.
arXiv Detail & Related papers (2023-10-20T14:51:10Z) - Query Rewriting for Retrieval-Augmented Large Language Models [139.242907155883]
Large Language Models (LLMs) play powerful, black-box readers in the retrieve-then-read pipeline.
This work introduces a new framework, Rewrite-Retrieve-Read instead of the previous retrieve-then-read for the retrieval-augmented LLMs.
arXiv Detail & Related papers (2023-05-23T17:27:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.