論文の概要: An End-to-End Deep Learning Method for Solving Nonlocal Allen-Cahn and Cahn-Hilliard Phase-Field Models
- arxiv url: http://arxiv.org/abs/2410.08914v1
- Date: Fri, 11 Oct 2024 15:41:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 21:16:19.393680
- Title: An End-to-End Deep Learning Method for Solving Nonlocal Allen-Cahn and Cahn-Hilliard Phase-Field Models
- Title(参考訳): 非局所アレン・カーンおよびカーン・ヒリヤード位相場モデルのエンド・ツー・エンド深層学習法
- Authors: Yuwei Geng, Olena Burkovska, Lili Ju, Guannan Zhang, Max Gunzburger,
- Abstract要約: 本研究では,非局所的なアレン・カーン(AC)およびカーン・ヒリアード(CH)位相場モデルの効率的なエンドツーエンドディープラーニング手法を提案する。
ニューラルネットワークモデルへの入力チャネルとして非ローカルカーネルを組み込むことで、ニューラルネットワークのアーキテクチャをカスタマイズする。
- 参考スコア(独自算出の注目度): 11.92061406443778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an efficient end-to-end deep learning method for solving nonlocal Allen-Cahn (AC) and Cahn-Hilliard (CH) phase-field models. One motivation for this effort emanates from the fact that discretized partial differential equation-based AC or CH phase-field models result in diffuse interfaces between phases, with the only recourse for remediation is to severely refine the spatial grids in the vicinity of the true moving sharp interface whose width is determined by a grid-independent parameter that is substantially larger than the local grid size. In this work, we introduce non-mass conserving nonlocal AC or CH phase-field models with regular, logarithmic, or obstacle double-well potentials. Because of non-locality, some of these models feature totally sharp interfaces separating phases. The discretization of such models can lead to a transition between phases whose width is only a single grid cell wide. Another motivation is to use deep learning approaches to ameliorate the otherwise high cost of solving discretized nonlocal phase-field models. To this end, loss functions of the customized neural networks are defined using the residual of the fully discrete approximations of the AC or CH models, which results from applying a Fourier collocation method and a temporal semi-implicit approximation. To address the long-range interactions in the models, we tailor the architecture of the neural network by incorporating a nonlocal kernel as an input channel to the neural network model. We then provide the results of extensive computational experiments to illustrate the accuracy, structure-preserving properties, predictive capabilities, and cost reductions of the proposed method.
- Abstract(参考訳): 本研究では,非局所的なアレン・カーン(AC)およびカーン・ヒリアード(CH)位相場モデルの効率的なエンドツーエンドディープラーニング手法を提案する。
この試みの動機の1つは、離散化された偏微分方程式に基づくACまたはCH位相場モデルが位相間の拡散界面をもたらすという事実から導かれる。
本研究では、非質量保存型非局所ACまたはCH相場モデルについて、正規性、対数性、障害物二重井戸ポテンシャルについて紹介する。
非局所性のため、これらのモデルのいくつかは位相を分離する完全にシャープなインターフェースを特徴としている。
このようなモデルの離散化は、単一の格子セル幅しか持たない位相間の遷移につながる可能性がある。
もう1つの動機は、離散化された非局所位相場モデルを解くための高コストを改善するためにディープラーニングアプローチを使用することである。
この目的のために、カスタマイズされたニューラルネットワークの損失関数は、ACまたはCHモデルの完全離散近似の残余を用いて定義され、これはフーリエコロケーション法と時間半単純近似を適用した結果である。
モデル内の長距離相互作用に対処するために、ニューラルネットワークモデルへの入力チャネルとして非局所カーネルを組み込むことにより、ニューラルネットワークのアーキテクチャを調整する。
次に, 提案手法の精度, 構造保存特性, 予測能力, コスト削減について検討した。
関連論文リスト
- A domain decomposition-based autoregressive deep learning model for unsteady and nonlinear partial differential equations [2.7755345520127936]
非定常・非線形偏微分方程式(PDE)を正確にモデル化するためのドメイン分割型ディープラーニング(DL)フレームワークCoMLSimを提案する。
このフレームワークは、(a)畳み込みニューラルネットワーク(CNN)ベースのオートエンコーダアーキテクチャと(b)完全に接続された層で構成される自己回帰モデルという、2つの重要なコンポーネントで構成されている。
論文 参考訳(メタデータ) (2024-08-26T17:50:47Z) - Gradient Flow Based Phase-Field Modeling Using Separable Neural Networks [1.2277343096128712]
勾配流問題の解法として, 位相場の分離可能なニューラルネットワークによる近似を最小化運動方式で提案する。
提案手法は相分離問題に対する最先端の機械学習手法よりも優れている。
論文 参考訳(メタデータ) (2024-05-09T21:53:27Z) - Adaptive Multilevel Neural Networks for Parametric PDEs with Error Estimation [0.0]
ニューラルネットワークアーキテクチャは高次元パラメータ依存偏微分方程式(pPDE)を解くために提示される
モデルデータのパラメータを対応する有限要素解にマッピングするために構築される。
適応有限要素法(AFEM)で生成される粗いグリッド解と一連の補正を出力する。
論文 参考訳(メタデータ) (2024-03-19T11:34:40Z) - Typical and atypical solutions in non-convex neural networks with
discrete and continuous weights [2.7127628066830414]
ランダムな規則や関連を学習する単純な非拘束型ネットワークモデルとして、二項および連続負マージンパーセプトロンについて検討する。
どちらのモデルも、非常に平坦で幅の広い劣支配的な最小化器を示す。
両モデルにおいて、学習装置としての一般化性能は、広い平坦な最小化器の存在により大幅に向上することを示した。
論文 参考訳(メタデータ) (2023-04-26T23:34:40Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
コーンシャム密度汎関数論(KS-DFT)を解くための深層学習手法を提案する。
このような手法はSCF法と同じ表現性を持つが,計算複雑性は低下する。
さらに,本手法により,より複雑なニューラルベース波動関数の探索が可能となった。
論文 参考訳(メタデータ) (2023-03-01T10:38:10Z) - Accelerated Solutions of Coupled Phase-Field Problems using Generative
Adversarial Networks [0.0]
我々は,エンコーダデコーダに基づく条件付きGeneLSTM層を用いたニューラルネットワークに基づく新しいフレームワークを開発し,Cahn-Hilliardマイクロ構造方程式を解く。
トレーニングされたモデルはメッシュとスケールに依存しないため、効果的なニューラル演算子としての応用が保証される。
論文 参考訳(メタデータ) (2022-11-22T08:32:22Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affineモデルは、ハイブリッドシステムの他のクラスに対する普遍近似、局所線型性、同値性を保証する。
本研究では,任意の領域を持つ固有入力モデル(NPWARX)を用いたPieceWise Auto Regressiveの同定に着目する。
このアーキテクチャは、機械学習の分野で開発されたMixture of Expertの概念に従って考案された。
論文 参考訳(メタデータ) (2020-09-29T12:50:33Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
過度にパラメータ化された多層ネットワーク上の勾配勾配は、RKHSノルムではないリッチな暗黙バイアスを誘発できることを示す。
また、より複雑な行列分解モデルと多層非線形ネットワークに対して、この遷移を実証的に示す。
論文 参考訳(メタデータ) (2020-02-20T15:43:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。