Improving Colorectal Cancer Screening and Risk Assessment through Predictive Modeling on Medical Images and Records
- URL: http://arxiv.org/abs/2410.09880v2
- Date: Sun, 13 Apr 2025 19:21:04 GMT
- Title: Improving Colorectal Cancer Screening and Risk Assessment through Predictive Modeling on Medical Images and Records
- Authors: Shuai Jiang, Christina Robinson, Joseph Anderson, William Hisey, Lynn Butterly, Arief Suriawinata, Saeed Hassanpour,
- Abstract summary: Colonoscopy screening effectively identifies polyps before they progress to colorectal cancer (CRC)<n>Current follow-up guidelines rely primarily on features overlooking other important risk factors.<n>We adapted a transformer-based model for histopathology image analysis to predict 5-year CRC risk.
- Score: 2.675031613330622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Colonoscopy screening effectively identifies and removes polyps before they progress to colorectal cancer (CRC), but current follow-up guidelines rely primarily on histopathological features, overlooking other important CRC risk factors. Variability in polyp characterization among pathologists also hinders consistent surveillance decisions. Advances in digital pathology and deep learning enable the integration of pathology slides and medical records for more accurate CRC risk prediction. Using data from the New Hampshire Colonoscopy Registry, including longitudinal follow-up, we adapted a transformer-based model for histopathology image analysis to predict 5-year CRC risk. We further explored multi-modal fusion strategies to combine clinical records with deep learning-derived image features. Training the model to predict intermediate clinical variables improved 5-year CRC risk prediction (AUC = 0.630) compared to direct prediction (AUC = 0.615, p = 0.013). Incorporating both imaging and non-imaging data, without requiring manual slide review, further improved performance (AUC = 0.674) compared to traditional features from colonoscopy and microscopy reports (AUC = 0.655, p = 0.001). These results highlight the value of integrating diverse data modalities with computational methods to enhance CRC risk stratification.
Related papers
- Vision-Language Model-Based Semantic-Guided Imaging Biomarker for Early Lung Cancer Detection [1.5391321019692428]
This research aims to integrate semantic features derived from radiologists' assessments of nodules, allowing the model to learn clinically relevant, robust, and explainable features for predicting lung cancer.
We finetuned a pretrained Contrastive Language-Image Pretraining model with a parameter-efficient fine-tuning approach to align imaging and semantic features and predict the one-year lung cancer diagnosis.
Our model demonstrated an AUROC of 0.90 and AUPRC of 0.78, outperforming baseline state-of-the-art models on external datasets.
arXiv Detail & Related papers (2025-04-30T06:11:34Z) - Opportunistic Screening for Pancreatic Cancer using Computed Tomography Imaging and Radiology Reports [4.447609555191978]
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer, with most cases diagnosed at stage IV and a five-year overall survival rate below 5%.
We developed and evaluated a deep learning fusion model that integrates radiology reports and CT imaging to predict PDAC risk.
arXiv Detail & Related papers (2025-03-31T21:13:42Z) - xCG: Explainable Cell Graphs for Survival Prediction in Non-Small Cell Lung Cancer [10.515405477496735]
We present an explainable cell graph (xCG) approach for survival prediction.
We validate our model on a public cohort of imaging mass (IMC) data for 416 cases of lung adenocarcinoma.
arXiv Detail & Related papers (2024-11-12T08:53:49Z) - Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
arXiv Detail & Related papers (2024-10-18T12:37:51Z) - Re-identification from histopathology images [0.4154350202907906]
This study demonstrates that even relatively simple deep learning algorithms can re-identify patients in large histopathology datasets with substantial accuracy.
Based on our findings, we formulated a risk assessment scheme to estimate the risk to the patient's privacy prior to publication.
arXiv Detail & Related papers (2024-03-19T15:15:19Z) - MM-SurvNet: Deep Learning-Based Survival Risk Stratification in Breast
Cancer Through Multimodal Data Fusion [18.395418853966266]
We propose a novel deep learning approach for breast cancer survival risk stratification.
We employ vision transformers, specifically the MaxViT model, for image feature extraction, and self-attention to capture intricate image relationships at the patient level.
A dual cross-attention mechanism fuses these features with genetic data, while clinical data is incorporated at the final layer to enhance predictive accuracy.
arXiv Detail & Related papers (2024-02-19T02:31:36Z) - Cancer-Net PCa-Data: An Open-Source Benchmark Dataset for Prostate
Cancer Clinical Decision Support using Synthetic Correlated Diffusion Imaging
Data [75.77035221531261]
Cancer-Net PCa-Data is an open-source benchmark dataset of volumetric CDI$s$ imaging data of PCa patients.
Cancer-Net PCa-Data is the first-ever public dataset of CDI$s$ imaging data for PCa.
arXiv Detail & Related papers (2023-11-20T10:28:52Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Multimodal Deep Learning for Personalized Renal Cell Carcinoma
Prognosis: Integrating CT Imaging and Clinical Data [3.790959613880792]
Renal cell carcinoma represents a significant global health challenge with a low survival rate.
This research aimed to devise a comprehensive deep-learning model capable of predicting survival probabilities in patients with renal cell carcinoma.
The proposed framework comprises three modules: a 3D image feature extractor, clinical variable selection, and survival prediction.
arXiv Detail & Related papers (2023-07-07T13:09:07Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
We propose a new fine-tuning strategy that includes positive-pair loss relaxation and random sentence sampling.
Our approach consistently improves overall zero-shot pathology classification across four chest X-ray datasets and three pre-trained models.
arXiv Detail & Related papers (2022-12-14T06:04:18Z) - Deep learning methods for drug response prediction in cancer:
predominant and emerging trends [50.281853616905416]
Exploiting computational predictive models to study and treat cancer holds great promise in improving drug development and personalized design of treatment plans.
A wave of recent papers demonstrates promising results in predicting cancer response to drug treatments while utilizing deep learning methods.
This review allows to better understand the current state of the field and identify major challenges and promising solution paths.
arXiv Detail & Related papers (2022-11-18T03:26:31Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Pseudo-domains in imaging data improve prediction of future disease
status in multi-center studies [57.712855968194305]
We propose a prediction method that can cope with a high number of different scanning sites and a low number of samples per site.
Results show that they improve the prediction accuracy for steatosis after 48 weeks from imaging data acquired at an initial visit and 12-weeks follow-up in liver disease.
arXiv Detail & Related papers (2021-11-15T09:40:54Z) - Colonoscopy Polyp Detection and Classification: Dataset Creation and
Comparative Evaluations [12.160373952983319]
Colorectal cancer (CRC) is one of the most common types of cancer with a high mortality rate.
Computer-aided polyp detection and classification system can significantly increase the effectiveness of colonoscopy.
This work can serve as a baseline for future research in polyp detection and classification.
arXiv Detail & Related papers (2021-04-22T01:57:35Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - A Machine Learning Challenge for Prognostic Modelling in Head and Neck
Cancer Using Multi-modal Data [0.10651507097431492]
We have conducted an institutional machine learning challenge to develop an accurate model for overall survival prediction in head and neck cancer.
We compared 12 different submissions using imaging and clinical data, separately or in combination.
The winning approach used non-linear, multitask learning on clinical data and tumour volume, achieving high prognostic accuracy for 2-year and lifetime survival prediction.
arXiv Detail & Related papers (2021-01-28T11:20:34Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.