論文の概要: A Personalized MOOC Learning Group and Course Recommendation Method Based on Graph Neural Network and Social Network Analysis
- arxiv url: http://arxiv.org/abs/2410.10658v1
- Date: Mon, 14 Oct 2024 16:06:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-29 20:25:02.357919
- Title: A Personalized MOOC Learning Group and Course Recommendation Method Based on Graph Neural Network and Social Network Analysis
- Title(参考訳): グラフニューラルネットワークとソーシャルネットワーク分析に基づくMOOC学習グループとコース推薦手法
- Authors: Zijin Luo, Xu Wang, Yiquan Wang, Haotian Zhang, Zhuangzhuang Li,
- Abstract要約: このモデルは、様々な高等教育MOOCプラットフォームから4万人近いユーザーと数万のコースに関するデータを利用している。
収集したデータを利用して、学生のためのコースや学習グループに関するパーソナライズされたレコメンデーションを提供するAIベースのアシスタントが開発された。
- 参考スコア(独自算出の注目度): 9.069543885639245
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In order to enhance students' initiative and participation in MOOC learning, this study constructed a multi-level network model based on Social Network Analysis (SNA). The model makes use of data pertaining to nearly 40,000 users and tens of thousands of courses from various higher education MOOC platforms. Furthermore, an AI-based assistant has been developed which utilises the collected data to provide personalised recommendations regarding courses and study groups for students. The objective is to examine the relationship between students' course selection preferences and their academic interest levels. Based on the results of the relationship analysis, the AI assistant employs technologies such as GNN to recommend suitable courses and study groups to students. This study offers new insights into the potential of personalised teaching on MOOC platforms, demonstrating the value of data-driven and AI-assisted methods in improving the quality of online learning experiences, increasing student engagement, and enhancing learning outcomes.
- Abstract(参考訳): 本研究は,MOOC学習への学生の取り組みと参加を促進するために,SNA(Social Network Analysis)に基づくマルチレベルネットワークモデルを構築した。
このモデルは、様々な高等教育MOOCプラットフォームから4万人近いユーザーと数万のコースに関するデータを利用している。
さらに、収集したデータを利用して、学生のためのコースや研究グループに関するパーソナライズされたレコメンデーションを提供するAIベースのアシスタントも開発されている。
本研究の目的は,学生の授業選択選好と学力レベルとの関係を検討することである。
関係分析の結果に基づき、AIアシスタントはGNNなどの技術を用いて、学生に適切なコースや研究グループを推薦する。
本研究はMOOCプラットフォーム上でのパーソナライズされた教育の可能性に関する新たな洞察を提供し、オンライン学習体験の質の向上、学生のエンゲージメントの向上、学習成果の向上におけるデータ駆動型およびAI支援手法の価値を実証する。
関連論文リスト
- From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents [78.15899922698631]
MAIC(Massive AI-empowered Course)は、LLM駆動のマルチエージェントシステムを活用して、AIが強化された教室を構築するオンライン教育の新たな形態である。
中国一の大学である清華大学で予備的な実験を行う。
論文 参考訳(メタデータ) (2024-09-05T13:22:51Z) - Evaluating Pedagogical Incentives in Undergraduate Computing: A Mixed Methods Approach Using Learning Analytics [0.0]
本稿では,ユニヴァーシティ・カレッジ・ロンドンにおける1年目のコンピュータ・モジュールにおける新たな教育的インセンティブの効果を評価する。
我々は、学習分析と質的データを組み合わせて、これらのインセンティブの有効性を学生のエンゲージメントを高めるために、混合手法を用いて評価する。
本稿では,データ駆動型客観分析を学生の視点と統合した,生徒のエンゲージメントに対する解釈可能かつ行動可能なモデルを提案する。
論文 参考訳(メタデータ) (2024-03-13T16:39:38Z) - Implementing Learning Principles with a Personal AI Tutor: A Case Study [2.94944680995069]
本研究は,人間の学習過程をモデル化し,学術的性能を効果的に向上するパーソナルAIチューターの能力を示す。
プログラムにAIチューターを統合することで、教育者は、学習科学の原則に基づくパーソナライズされた学習体験を学生に提供することができる。
論文 参考訳(メタデータ) (2023-09-10T15:35:47Z) - Multi-Layer Personalized Federated Learning for Mitigating Biases in Student Predictive Analytics [8.642174401125263]
本稿では,学生グループ化基準の異なる層にまたがる推論精度を最適化する多層パーソナライズドフェデレーションラーニング手法を提案する。
提案手法では,個別の学生サブグループに対するパーソナライズされたモデルがグローバルモデルから導出される。
3つの実世界のオンラインコースデータセットの実験は、既存の学生モデルベンチマークよりも、我々のアプローチによって達成された大きな改善を示している。
論文 参考訳(メタデータ) (2022-12-05T17:27:28Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
我々は,データプライバシを同時に保持し,モデルの安定性を向上させるために,Pear Study Learning (PSL) と呼ばれる責任あるアクティブラーニング手法を提案する。
まず,クラウドサイドのタスク学習者(教師)から未学習データを分離する。
トレーニング中、タスク学習者は軽量なアクティブ学習者に指示し、アクティブサンプリング基準に対するフィードバックを提供する。
論文 参考訳(メタデータ) (2022-11-24T13:18:27Z) - Mitigating Biases in Student Performance Prediction via Attention-Based
Personalized Federated Learning [7.040747348755578]
従来の学習に基づく学生モデリングのアプローチは、データの可用性のバイアスにより、表現不足の学生グループにあまり一般化しない。
本研究では,オンライン学習活動から学生のパフォーマンスを予測する手法を提案し,人種や性別などの異なる集団を対象とした推論精度を最適化する。
論文 参考訳(メタデータ) (2022-08-02T00:22:20Z) - Motivating Learners in Multi-Orchestrator Mobile Edge Learning: A
Stackelberg Game Approach [54.28419430315478]
Mobile Edge Learningは、異種エッジデバイス上で機械学習モデルの分散トレーニングを可能にする。
MELでは、十分なトレーニングデータやコンピューティングリソースを入手することなく、トレーニング性能が低下する。
そこで我々は2ラウンドのStackelbergゲームとしてオーケストレータとラーナーの相互作用を定式化するインセンティブ機構を提案する。
論文 参考訳(メタデータ) (2021-09-25T17:27:48Z) - Assessing the Knowledge State of Online Students -- New Data, New
Approaches, Improved Accuracy [28.719009375724028]
適応型オンライン教育システムを構築する上で,学生パフォーマンス(SP)モデリングは重要なステップである。
この研究は、4つの異なる知的チューリングシステムから最近利用可能になった4つの非常に大きなデータセットを使った最初のものである。
論文 参考訳(メタデータ) (2021-09-04T00:08:59Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z) - Revealing the Hidden Patterns: A Comparative Study on Profiling
Subpopulations of MOOC Students [61.58283466715385]
MOOC(Massive Open Online Courses)は、学生の異質性を示す。
MOOCプラットフォームからの複雑な“ビッグデータ”の出現は、学生がMOOCにどのように従事しているかを深く理解する上で、難しいが報われる機会である。
本報告では,MOOCにおける学生活動のクラスタリング分析と,学生集団間の行動パターンと人口動態の比較分析について述べる。
論文 参考訳(メタデータ) (2020-08-12T10:38:50Z) - Peer-inspired Student Performance Prediction in Interactive Online
Question Pools with Graph Neural Network [56.62345811216183]
本稿では,対話型オンライン質問プールにおいて,より優れた生徒のパフォーマンス予測を実現するために,グラフニューラルネットワーク(GNN)を用いた新しいアプローチを提案する。
具体的には,学生のインタラクションを用いた学生と質問の関係をモデル化し,学生のインタラクション・クエストネットワークを構築する。
1631の質問に対して4000人以上の学生の問題解決過程において生成した104,113個のマウス軌跡からなる実世界のデータセットに対するアプローチの有効性を評価した。
論文 参考訳(メタデータ) (2020-08-04T14:55:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。