論文の概要: Agent-as-a-Judge: Evaluate Agents with Agents
- arxiv url: http://arxiv.org/abs/2410.10934v1
- Date: Mon, 14 Oct 2024 17:57:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:02:32.602762
- Title: Agent-as-a-Judge: Evaluate Agents with Agents
- Title(参考訳): エージェント・アズ・ア・ジャッジ:エージェントによるエージェントの評価
- Authors: Mingchen Zhuge, Changsheng Zhao, Dylan Ashley, Wenyi Wang, Dmitrii Khizbullin, Yunyang Xiong, Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, Yangyang Shi, Vikas Chandra, Jürgen Schmidhuber,
- Abstract要約: 本稿ではエージェント・アズ・ア・ジャッジ(Agent-as-a-Judge)フレームワークを紹介し,エージェント・システムを用いてエージェント・システムの評価を行う。
これはLLM-as-a-Judgeフレームワークの有機的拡張であり、タスク解決プロセス全体の中間フィードバックを可能にするエージェント的特徴を取り入れている。
55のリアルな自動化AI開発タスクのベンチマークであるDevAIを紹介します。
- 参考スコア(独自算出の注目度): 61.33974108405561
- License:
- Abstract: Contemporary evaluation techniques are inadequate for agentic systems. These approaches either focus exclusively on final outcomes -- ignoring the step-by-step nature of agentic systems, or require excessive manual labour. To address this, we introduce the Agent-as-a-Judge framework, wherein agentic systems are used to evaluate agentic systems. This is an organic extension of the LLM-as-a-Judge framework, incorporating agentic features that enable intermediate feedback for the entire task-solving process. We apply the Agent-as-a-Judge to the task of code generation. To overcome issues with existing benchmarks and provide a proof-of-concept testbed for Agent-as-a-Judge, we present DevAI, a new benchmark of 55 realistic automated AI development tasks. It includes rich manual annotations, like a total of 365 hierarchical user requirements. We benchmark three of the popular agentic systems using Agent-as-a-Judge and find it dramatically outperforms LLM-as-a-Judge and is as reliable as our human evaluation baseline. Altogether, we believe that Agent-as-a-Judge marks a concrete step forward for modern agentic systems -- by providing rich and reliable reward signals necessary for dynamic and scalable self-improvement.
- Abstract(参考訳): 現代評価技術はエージェントシステムには不十分である。
これらのアプローチは、エージェントシステムのステップバイステップの性質を無視したり、過度の手作業を必要とする、最終的な結果にのみフォーカスする。
そこで,エージェント・アズ・ア・ジャッジ(Agent-as-a-Judge)フレームワークを導入し,エージェント・システムを用いてエージェント・システムの評価を行う。
これはLLM-as-a-Judgeフレームワークの有機的拡張であり、タスク解決プロセス全体の中間フィードバックを可能にするエージェント的特徴を取り入れている。
コード生成のタスクにエージェント・アズ・ア・ジャッジを適用します。
既存のベンチマークの問題を克服し、Agent-as-a-Judge用の概念実証テストベッドを提供するために、55の自動化AI開発タスクの新たなベンチマークであるDevAIを提案する。
これには、合計365の階層的ユーザ要件など、リッチなマニュアルアノテーションが含まれている。
我々は,エージェント・アズ・ア・ジャッジを用いたエージェントシステムの3つのベンチマークを行い,LLM・ア・ジャッジを劇的に上回り,人間の評価基準と同じくらい信頼性が高いことを示した。
エージェント・アズ・ア・ジャッジ(Agen-as-a-Judge)は、動的でスケーラブルな自己改善に必要な、リッチで信頼性の高い報酬信号を提供することによって、現代のエージェントシステムにとって、具体的な一歩であると考えています。
関連論文リスト
- Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement [117.94654815220404]
G"odel AgentはG"odelマシンにインスパイアされた自己進化型フレームワークである。
G"odel Agentは、パフォーマンス、効率、一般化性において手作業によるエージェントを上回る、継続的な自己改善を実現することができる。
論文 参考訳(メタデータ) (2024-10-06T10:49:40Z) - Agent-E: From Autonomous Web Navigation to Foundational Design Principles in Agentic Systems [1.079505444748609]
本稿では,新しいWebエージェントであるAgent-Eの構築について紹介する。
Agent-Eは、最先端のWebエージェントよりも多くのアーキテクチャ改善を導入している。
我々は,Agent-Eが他のSOTAテキストおよびマルチモーダルWebエージェントを,ほとんどのカテゴリで10~30%上回っていることを示す。
論文 参考訳(メタデータ) (2024-07-17T21:44:28Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - AgentGym: Evolving Large Language Model-based Agents across Diverse Environments [116.97648507802926]
大規模言語モデル(LLM)はそのようなエージェントを構築するための有望な基盤と考えられている。
我々は、自己進化能力を備えた一般機能 LLM ベースのエージェントを構築するための第一歩を踏み出す。
我々はAgentGymを提案する。AgentGymは、幅広い、リアルタイム、ユニフォーマット、並行エージェント探索のための様々な環境とタスクを特徴とする新しいフレームワークである。
論文 参考訳(メタデータ) (2024-06-06T15:15:41Z) - Tell Me More! Towards Implicit User Intention Understanding of Language
Model Driven Agents [110.25679611755962]
現在の言語モデル駆動エージェントは、しばしば効果的なユーザ参加のメカニズムを欠いている。
Intention-in-Interaction (IN3) は明示的なクエリを通してユーザの暗黙の意図を検査するための新しいベンチマークである。
私たちは、タスクの曖昧さを積極的に評価し、ユーザの意図を問う強力なモデルであるMistral-Interactを経験的に訓練し、それらを実行可能な目標へと洗練させます。
論文 参考訳(メタデータ) (2024-02-14T14:36:30Z) - KwaiAgents: Generalized Information-seeking Agent System with Large
Language Models [33.59597020276034]
人間は批判的思考、計画、リフレクション、世界と対話し解釈するための利用可能なツールの活用に優れています。
大規模言語モデル(LLM)の最近の進歩は、マシンが前述の人間のような能力を持っていることも示唆している。
LLMに基づく汎用情報検索システムであるKwaiAgentsを紹介する。
論文 参考訳(メタデータ) (2023-12-08T08:11:11Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
大規模言語モデル(LLM)は、人工知能(AGI)の潜在的な火花と見なされる
まず、エージェントの概念を哲学的起源からAI開発まで追跡し、LLMがエージェントに適した基盤である理由を説明します。
単一エージェントシナリオ,マルチエージェントシナリオ,ヒューマンエージェント協調の3つの側面において,LLMベースのエージェントの広範な応用について検討する。
論文 参考訳(メタデータ) (2023-09-14T17:12:03Z) - Learning Generative Models with Goal-conditioned Reinforcement Learning [0.0]
目標条件付き強化学習を用いた生成モデル学習のための新しいフレームワークを提案する。
画像合成のタスクにおいて,本手法が多種多様な高品質なサンプルを生成可能であることを実証的に実証した。
論文 参考訳(メタデータ) (2023-03-26T20:33:44Z) - Differential Assessment of Black-Box AI Agents [29.98710357871698]
従来知られていたモデルから逸脱したブラックボックスAIエージェントを差分評価する手法を提案する。
我々は,漂流エージェントの現在の挙動と初期モデルの知識の疎度な観察を利用して,アクティブなクエリポリシーを生成する。
経験的評価は、エージェントモデルをスクラッチから再学習するよりも、我々のアプローチの方がはるかに効率的であることを示している。
論文 参考訳(メタデータ) (2022-03-24T17:48:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。