論文の概要: Learning to Optimize for Mixed-Integer Non-linear Programming
- arxiv url: http://arxiv.org/abs/2410.11061v3
- Date: Mon, 04 Nov 2024 18:33:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 14:55:41.548882
- Title: Learning to Optimize for Mixed-Integer Non-linear Programming
- Title(参考訳): 混合整数非線形プログラミングのための学習
- Authors: Bo Tang, Elias B. Khalil, Ján Drgoňa,
- Abstract要約: 混合整数非NLPプログラム(MINLP)はエネルギーシステムや輸送など様々な領域で発生するが、解決は困難である。
機械学習の最近の進歩は、最適化のための学習として知られる領域において、顕著な成功をもたらしている。
勾配を保ちながら整数出力を生成する2つの異なる補正層を提案する。
- 参考スコア(独自算出の注目度): 20.469394148261838
- License:
- Abstract: Mixed-integer non-linear programs (MINLPs) arise in various domains, such as energy systems and transportation, but are notoriously difficult to solve. Recent advances in machine learning have led to remarkable successes in optimization tasks, an area broadly known as learning to optimize. This approach includes using predictive models to generate solutions for optimization problems with continuous decision variables, thereby avoiding the need for computationally expensive optimization algorithms. However, applying learning to MINLPs remains challenging primarily due to the presence of integer decision variables, which complicate gradient-based learning. To address this limitation, we propose two differentiable correction layers that generate integer outputs while preserving gradient information. Combined with a soft penalty for constraint violation, our framework can tackle both the integrality and non-linear constraints in a MINLP. Experiments on three problem classes with convex/non-convex objective/constraints and integer/mixed-integer variables show that the proposed learning-based approach consistently produces high-quality solutions for parametric MINLPs extremely quickly. As problem size increases, traditional exact solvers and heuristic methods struggle to find feasible solutions, whereas our approach continues to deliver reliable results. Our work extends the scope of learning-to-optimize to MINLP, paving the way for integrating integer constraints into deep learning models. Our code is available at https://github.com/pnnl/L2O-pMINLP.
- Abstract(参考訳): 混合整数非線形プログラム(MINLP)はエネルギーシステムや輸送など様々な領域で発生するが、解決は困難である。
機械学習の最近の進歩は、最適化タスクにおいて顕著な成功を収めた。
このアプローチでは、予測モデルを使用して、連続的な決定変数による最適化問題の解を生成することにより、計算コストのかかる最適化アルゴリズムの必要性を回避する。
しかし、MINLPに学習を適用することは、主に勾配に基づく学習を複雑にする整数決定変数が存在するため、依然として困難である。
この制限に対処するために、勾配情報を保持しながら整数出力を生成する2つの異なる補正層を提案する。
制約違反に対するソフトペナルティと組み合わせることで、私たちのフレームワークはMINLPにおける積分性と非線形制約の両方に取り組むことができる。
凸/非凸目的/制約と整数/混合整数変数を持つ3つの問題クラスに対する実験により,提案手法はパラメトリックMINLPの高品質解を極端に高速に生成することを示す。
問題のサイズが大きくなるにつれて、従来の厳密な解法とヒューリスティックな手法は実現可能な解決策を見つけるのに苦労するが、我々のアプローチは信頼性の高い結果を提供し続けている。
我々の研究は、学習から最適化までの範囲をMINLPに拡大し、整数制約をディープラーニングモデルに統合する方法を開拓する。
私たちのコードはhttps://github.com/pnnl/L2O-pMINLPで公開されています。
関連論文リスト
- A Penalty-Based Guardrail Algorithm for Non-Decreasing Optimization with Inequality Constraints [1.5498250598583487]
伝統的な数学的プログラミングの解法は制約付き最小化問題を解くのに長い計算時間を必要とする。
ペナルティに基づくガードレールアルゴリズム(PGA)を提案する。
論文 参考訳(メタデータ) (2024-05-03T10:37:34Z) - Near-Optimal Solutions of Constrained Learning Problems [85.48853063302764]
機械学習システムでは、振る舞いを縮小する必要性がますます顕在化している。
これは、双対ロバスト性変数を満たすモデルの開発に向けた最近の進歩によって証明されている。
この結果から, 豊富なパラメトリゼーションは非次元的, 有限な学習問題を効果的に緩和することが示された。
論文 参考訳(メタデータ) (2024-03-18T14:55:45Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
機械学習(ML)モデルは、制約付き最適化ソルバをエミュレートするために訓練される。
本稿では,MLモデルを用いて2つの解推定を直接予測する手法を提案する。
これにより、双対目的が損失関数であるエンドツーエンドのトレーニングスキームと、双対上昇法をエミュレートした原始的実現可能性への解推定を可能にする。
論文 参考訳(メタデータ) (2024-03-06T04:43:22Z) - Accelerated Gradient Algorithms with Adaptive Subspace Search for
Instance-Faster Optimization [6.896308995955336]
グラディエントベースのミニマックス最適アルゴリズムは、継続的最適化と機械学習の開発を促進する。
本稿では,勾配に基づくアルゴリズムの設計と解析を行う新しい手法を機械学習に直接応用する。
論文 参考訳(メタデータ) (2023-12-06T01:16:10Z) - Minimizing Entropy to Discover Good Solutions to Recurrent Mixed Integer
Programs [0.0]
混合整数プログラミング(MIP)問題に対する現在の解法は、幅広い問題に対して良好に動作するように設計されている。
近年の研究では、機械学習(ML)をMIPソルバと統合してドメイン知識を注入し、最適性ギャップを効率的に閉じることが示されている。
本稿では、エントロピーの概念を用いて、最小限のトレーニングデータとチューニングで効率的にモデルを構築するオンラインソルバを提案する。
論文 参考訳(メタデータ) (2022-02-07T18:52:56Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
本稿では,2つの世界の長所を結合するハイブリッドな手法を提案する。この手法では,グラフを最適化する上層学習手法とバイレベルフレームワークを開発する。
このような二段階のアプローチは、元のハードCOでの学習を単純化し、モデルキャパシティの需要を効果的に軽減することができる。
論文 参考訳(メタデータ) (2021-06-09T09:18:18Z) - Divide and Learn: A Divide and Conquer Approach for Predict+Optimize [50.03608569227359]
予測+最適化問題は、予測係数を使用する最適化プロブレムと、確率係数の機械学習を組み合わせる。
本稿では, 予測係数を1次線形関数として, 最適化問題の損失を直接表現する方法を示す。
本稿では,この制約を伴わずに最適化問題に対処し,最適化損失を用いてその係数を予測する新しい分割アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-04T00:26:56Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - Inexact Derivative-Free Optimization for Bilevel Learning [0.27074235008521236]
変分正則化技術は数理イメージングの分野で支配的である。
この問題を解決するための一般的な戦略は、これらのパラメータをデータから学習することだ。
上層問題の解法では、下層問題の正確な解にアクセスできると仮定することが一般的であり、実際は不可能である。
本稿では, 厳密な低レベル問題解を必要としない不正確な微分自由最適化アルゴリズムを用いて, これらの問題を解くことを提案する。
論文 参考訳(メタデータ) (2020-06-23T00:17:32Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
無線ネットワークにおけるリソース割り当てとトランシーバーは、通常最適化問題の解決によって設計される。
本稿では,変数最適化と関数最適化の両問題を解くための教師なし・教師なし学習フレームワークを紹介する。
論文 参考訳(メタデータ) (2020-01-03T11:01:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。