論文の概要: Learning to Optimize for Mixed-Integer Non-linear Programming with Feasibility Guarantees
- arxiv url: http://arxiv.org/abs/2410.11061v9
- Date: Sun, 18 May 2025 09:26:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 17:08:51.441518
- Title: Learning to Optimize for Mixed-Integer Non-linear Programming with Feasibility Guarantees
- Title(参考訳): 実現可能性保証を用いた混合整数非線形プログラミングのための学習
- Authors: Bo Tang, Elias B. Khalil, Ján Drgoňa,
- Abstract要約: 混合整数非線形プログラム(MINLP)は、エネルギーシステムや輸送ほど多様な領域で発生するが、解くのは非常に難しい。
2つの整数補正層を持つ新しいL2O手法を提案し、解の積分性を保証するとともに、解の実現性を確保するための射影ステップを提案する。
実験の結果,提案手法は最大数万変数のMINLPを効率よく解き,ミリ秒以内の高品質な解が得られることがわかった。
- 参考スコア(独自算出の注目度): 20.469394148261838
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mixed-integer nonlinear programs (MINLPs) arise in domains as diverse as energy systems and transportation, but are notoriously difficult to solve, particularly at scale. While learning-to-optimize (L2O) methods have been successful at continuous optimization, extending them to MINLPs is challenging due to integer constraints. To overcome this, we propose a novel L2O approach with two integer correction layers to ensure the integrality of the solution and a projection step to ensure the feasibility of the solution. We prove that the projection step converges, providing a theoretical guarantee for our method. Our experiments show that our methods efficiently solve MINLPs with up to tens of thousands of variables, providing high-quality solutions within milliseconds, even for problems where traditional solvers and heuristics fail. This is the first general L2O method for parametric MINLPs, finding solutions to some of the largest instances reported to date.
- Abstract(参考訳): 混合整数非線形プログラム(MINLP)はエネルギーシステムや輸送ほど多様な領域で発生するが、特に大規模では解決が困難である。
連続最適化においてL2O(Learning-to-Optimize)メソッドは成功したが、整数制約のためMINLPに拡張することは困難である。
これを解決するために, 2つの整数補正層を持つ新しいL2O手法を提案し, 解の積分性を保証するとともに, 解の実現性を確保するための射影ステップを提案する。
射影ステップが収束することを証明し,提案手法の理論的保証を与える。
実験の結果,従来の解法やヒューリスティックスが失敗する問題においても,最大数万変数のMINLPを効率よく解き,ミリ秒以内で高品質な解が得られることがわかった。
これはパラメトリックMINLPに対する最初の一般L2O法であり、これまで報告された最大の例のいくつかに対する解を見つける。
関連論文リスト
- Integrated Offline and Online Learning to Solve a Large Class of Scheduling Problems [5.36210189158563]
我々は、単一マシンスケジューリング問題に対する高品質なソリューションを予測するために、統合機械学習(ML)アプローチを開発する。
我々は、考慮された問題のクラス全体がタイムインデックスの定式化として定式化できるという事実を活用する。
これらの問題のNPハードの性質を考えると、ラベル(すなわち最適解)は訓練のために生成し難い。
論文 参考訳(メタデータ) (2025-01-08T03:35:28Z) - Towards An Unsupervised Learning Scheme for Efficiently Solving Parameterized Mixed-Integer Programs [6.1860817947800655]
教師なし学習方式でバイナリ変数の自動エンコーダを訓練する。
オフライン学習AEのデコーダパラメータから平面制約を切断するクラスを構築する戦略を提案する。
原始的なMIP問題への統合は、実現可能な領域を縮小したMIPの強化につながる。
論文 参考訳(メタデータ) (2024-12-23T14:48:32Z) - RL-MILP Solver: A Reinforcement Learning Approach for Solving Mixed-Integer Linear Programs with Graph Neural Networks [3.3894236476098185]
混合整数線形プログラミング (MILP) は様々な分野にまたがる最適化手法である。
本稿では,最初の実現可能な解を見つけるだけでなく,より有効な解を段階的に発見する新しい強化学習(RL)に基づく解法を提案する。
論文 参考訳(メタデータ) (2024-11-29T07:23:34Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - A Penalty-Based Guardrail Algorithm for Non-Decreasing Optimization with Inequality Constraints [1.5498250598583487]
伝統的な数学的プログラミングの解法は制約付き最小化問題を解くのに長い計算時間を必要とする。
ペナルティに基づくガードレールアルゴリズム(PGA)を提案する。
論文 参考訳(メタデータ) (2024-05-03T10:37:34Z) - Near-Optimal Solutions of Constrained Learning Problems [85.48853063302764]
機械学習システムでは、振る舞いを縮小する必要性がますます顕在化している。
これは、双対ロバスト性変数を満たすモデルの開発に向けた最近の進歩によって証明されている。
この結果から, 豊富なパラメトリゼーションは非次元的, 有限な学習問題を効果的に緩和することが示された。
論文 参考訳(メタデータ) (2024-03-18T14:55:45Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
機械学習(ML)モデルは、制約付き最適化ソルバをエミュレートするために訓練される。
本稿では,MLモデルを用いて2つの解推定を直接予測する手法を提案する。
これにより、双対目的が損失関数であるエンドツーエンドのトレーニングスキームと、双対上昇法をエミュレートした原始的実現可能性への解推定を可能にする。
論文 参考訳(メタデータ) (2024-03-06T04:43:22Z) - Accelerated Gradient Algorithms with Adaptive Subspace Search for
Instance-Faster Optimization [6.896308995955336]
グラディエントベースのミニマックス最適アルゴリズムは、継続的最適化と機械学習の開発を促進する。
本稿では,勾配に基づくアルゴリズムの設計と解析を行う新しい手法を機械学習に直接応用する。
論文 参考訳(メタデータ) (2023-12-06T01:16:10Z) - Minimizing Entropy to Discover Good Solutions to Recurrent Mixed Integer
Programs [0.0]
混合整数プログラミング(MIP)問題に対する現在の解法は、幅広い問題に対して良好に動作するように設計されている。
近年の研究では、機械学習(ML)をMIPソルバと統合してドメイン知識を注入し、最適性ギャップを効率的に閉じることが示されている。
本稿では、エントロピーの概念を用いて、最小限のトレーニングデータとチューニングで効率的にモデルを構築するオンラインソルバを提案する。
論文 参考訳(メタデータ) (2022-02-07T18:52:56Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
本稿では,2つの世界の長所を結合するハイブリッドな手法を提案する。この手法では,グラフを最適化する上層学習手法とバイレベルフレームワークを開発する。
このような二段階のアプローチは、元のハードCOでの学習を単純化し、モデルキャパシティの需要を効果的に軽減することができる。
論文 参考訳(メタデータ) (2021-06-09T09:18:18Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
本稿では、強化学習(RL)と従来の運用研究(OR)アルゴリズムを組み合わせた2段階のフレームワークを開発する。
スケジューリング問題は,有限マルコフ決定過程 (MDP) と混合整数計画過程 (mixed-integer programming process) の2段階で解決される。
その結果,本アルゴリズムは,アジャイルな地球観測衛星スケジューリング問題に対して,安定かつ効率的に十分なスケジューリング計画を得ることができた。
論文 参考訳(メタデータ) (2021-03-10T03:16:12Z) - Divide and Learn: A Divide and Conquer Approach for Predict+Optimize [50.03608569227359]
予測+最適化問題は、予測係数を使用する最適化プロブレムと、確率係数の機械学習を組み合わせる。
本稿では, 予測係数を1次線形関数として, 最適化問題の損失を直接表現する方法を示す。
本稿では,この制約を伴わずに最適化問題に対処し,最適化損失を用いてその係数を予測する新しい分割アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-04T00:26:56Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - Inexact Derivative-Free Optimization for Bilevel Learning [0.27074235008521236]
変分正則化技術は数理イメージングの分野で支配的である。
この問題を解決するための一般的な戦略は、これらのパラメータをデータから学習することだ。
上層問題の解法では、下層問題の正確な解にアクセスできると仮定することが一般的であり、実際は不可能である。
本稿では, 厳密な低レベル問題解を必要としない不正確な微分自由最適化アルゴリズムを用いて, これらの問題を解くことを提案する。
論文 参考訳(メタデータ) (2020-06-23T00:17:32Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
無線ネットワークにおけるリソース割り当てとトランシーバーは、通常最適化問題の解決によって設計される。
本稿では,変数最適化と関数最適化の両問題を解くための教師なし・教師なし学習フレームワークを紹介する。
論文 参考訳(メタデータ) (2020-01-03T11:01:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。