論文の概要: Calabi-Yau metrics through Grassmannian learning and Donaldson's algorithm
- arxiv url: http://arxiv.org/abs/2410.11284v1
- Date: Tue, 15 Oct 2024 05:08:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:00:24.228933
- Title: Calabi-Yau metrics through Grassmannian learning and Donaldson's algorithm
- Title(参考訳): グラスマン学習とドナルドソンのアルゴリズムによるカラビ・ヤウ測度
- Authors: Carl Henrik Ek, Oisin Kim, Challenger Mishra,
- Abstract要約: K"ahlerメトリクスに対するリッチ平坦近似を得るための新しいアプローチを提案する。
グラスマン多様体上の勾配降下を用いて、切断の効率的な部分空間を同定する。
3次元のDwork族にメソッドを実装し、モジュライ空間の異なる点における振る舞いについてコメントする。
- 参考スコア(独自算出の注目度): 5.158605878911773
- License:
- Abstract: Motivated by recent progress in the problem of numerical K\"ahler metrics, we survey machine learning techniques in this area, discussing both advantages and drawbacks. We then revisit the algebraic ansatz pioneered by Donaldson. Inspired by his work, we present a novel approach to obtaining Ricci-flat approximations to K\"ahler metrics, applying machine learning within a `principled' framework. In particular, we use gradient descent on the Grassmannian manifold to identify an efficient subspace of sections for calculation of the metric. We combine this approach with both Donaldson's algorithm and learning on the $h$-matrix itself (the latter method being equivalent to gradient descent on the fibre bundle of Hermitian metrics on the tautological bundle over the Grassmannian). We implement our methods on the Dwork family of threefolds, commenting on the behaviour at different points in moduli space. In particular, we observe the emergence of nontrivial local minima as the moduli parameter is increased.
- Abstract(参考訳): 数値K\"ahlerメトリクスの問題の最近の進展に触発され、この分野の機械学習技術を調査し、利点と欠点を論じる。
その後、ドナルドソンが開拓した代数的アンザッツを再考する。
彼の研究に触発されて、我々は、K\"ahlerメトリクスに対するリッチフラット近似を得るための新しいアプローチを示し、'原則'フレームワーク内で機械学習を適用します。
特に、グラスマン多様体上の勾配降下を用いて、計量の計算のためにセクションの効率的な部分空間を同定する。
このアプローチは、ドナルドソンのアルゴリズムと、$h$-matrix自身での学習の両方と組み合わせる(後者の方法は、グラスマン多様体上のタウトロジーバンドル上のエルミート計量のファイバーバンドル上の勾配降下と等価である)。
3次元のDwork族にメソッドを実装し、モジュライ空間の異なる点における振る舞いについてコメントする。
特に、モジュラーパラメータが増加するにつれて、非自明な局所最小値の出現を観察する。
関連論文リスト
- Hyperboloid GPLVM for Discovering Continuous Hierarchies via Nonparametric Estimation [41.13597666007784]
次元性低減(DR)は複雑な高次元データの有用な表現を提供する。
最近のDR法は、階層データの忠実な低次元表現を導出する双曲幾何学に焦点を当てている。
本稿では,非パラメトリック推定による暗黙的な連続性を持つ高次元階層データを埋め込むためのhGP-LVMを提案する。
論文 参考訳(メタデータ) (2024-10-22T05:07:30Z) - FORML: A Riemannian Hessian-free Method for Meta-learning on Stiefel Manifolds [4.757859522106933]
本稿では、スティーフェル多様体上の微分の1次近似を用いたヘッセンフリーアプローチを提案する。
本手法は計算負荷とメモリフットプリントを大幅に削減する。
論文 参考訳(メタデータ) (2024-02-28T10:57:30Z) - Data-driven abstractions via adaptive refinements and a Kantorovich
metric [extended version] [56.94699829208978]
本稿では,動的システムのスマートでスケーラブルな抽象化のための適応的洗練手順を提案する。
最適構造を学ぶために、マルコフ連鎖の間のカントロビッチに着想を得た計量を定義する。
本稿では,従来の線形プログラミング手法よりも計算量が多くなることを示す。
論文 参考訳(メタデータ) (2023-03-30T11:26:40Z) - Neural Bregman Divergences for Distance Learning [60.375385370556145]
本稿では,入力凸ニューラルネットワークを用いて任意のブレグマン分岐を微分可能な方法で学習するための新しいアプローチを提案する。
提案手法は,新しいタスクと以前に研究されたタスクのセットにおいて,より忠実に相違点を学習することを示す。
我々のテストはさらに、既知の非対称なタスクにまで拡張するが、Bregmanでないタスクでは、不特定性にもかかわらず、我々のメソッドは競争的に機能する。
論文 参考訳(メタデータ) (2022-06-09T20:53:15Z) - Lagrangian Manifold Monte Carlo on Monge Patches [5.586191108738564]
この計量でラグランジアンモンテカルロがターゲット分布を効率的に探索する方法を示す。
我々の計量は1次情報しか必要とせず、高速な逆行列式と行列式を持つ。
論文 参考訳(メタデータ) (2022-02-01T21:01:22Z) - Adaptive neighborhood Metric learning [184.95321334661898]
適応的近傍距離距離学習(ANML)という新しい距離距離距離距離距離距離学習アルゴリズムを提案する。
ANMLは線形埋め込みと深層埋め込みの両方を学ぶのに使うことができる。
本手法で提案するemphlog-exp平均関数は,深層学習手法をレビューするための新たな視点を与える。
論文 参考訳(メタデータ) (2022-01-20T17:26:37Z) - Learning Linearized Assignment Flows for Image Labeling [70.540936204654]
画像ラベリングのための線形化代入フローの最適パラメータを推定するための新しいアルゴリズムを提案する。
この式をKrylov部分空間と低ランク近似を用いて効率的に評価する方法を示す。
論文 参考訳(メタデータ) (2021-08-02T13:38:09Z) - Neural Network Approximations for Calabi-Yau Metrics [0.0]
我々は、Fermat quintic、Dwork quintic、Tian-Yau多様体の数値的平坦な計量を推論するために、機械学習の手法を用いる。
本研究では,3桁のトレーニングを行った後,リッチ平坦性を評価する尺度が減少することを示す。
論文 参考訳(メタデータ) (2020-12-31T18:47:51Z) - A Kernel-Based Approach to Non-Stationary Reinforcement Learning in
Metric Spaces [53.47210316424326]
KeRNSは、非定常マルコフ決定過程におけるエピソード強化学習のためのアルゴリズムである。
我々は、状態-作用空間の被覆次元と時間とともにMDPの総変動にスケールする後悔境界を証明した。
論文 参考訳(メタデータ) (2020-07-09T21:37:13Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
次元削減法は、高次元データの可視化と解釈に有用な手段を提供する。
多くの一般的な手法は単純な2次元のマニフォールドでも劇的に失敗する。
本稿では,グローバルな構造を座標として組み込んだ,新しいインクリメンタルな空間推定器の埋め込み手法を提案する。
実験により,本アルゴリズムは実世界および合成データセットに新規で興味深い埋め込みを復元することを示した。
論文 参考訳(メタデータ) (2020-07-07T10:04:28Z) - Learning Flat Latent Manifolds with VAEs [16.725880610265378]
本稿では、ユークリッド計量がデータポイント間の類似性のプロキシとなる変分自動エンコーダのフレームワークの拡張を提案する。
我々は、変分オートエンコーダで一般的に使用されるコンパクトな以前のものを、最近発表されたより表現力のある階層型に置き換える。
提案手法は,ビデオ追跡ベンチマークを含む,さまざまなデータセットを用いて評価する。
論文 参考訳(メタデータ) (2020-02-12T09:54:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。