論文の概要: Poisson-Dirac Neural Networks for Modeling Coupled Dynamical Systems across Domains
- arxiv url: http://arxiv.org/abs/2410.11480v1
- Date: Tue, 15 Oct 2024 10:31:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:01:32.746512
- Title: Poisson-Dirac Neural Networks for Modeling Coupled Dynamical Systems across Domains
- Title(参考訳): Poisson-Dirac Neural Networks for Modeling Coupled Dynamical Systems across Domains
- Authors: Razmik Arman Khosrovian, Takaharu Yaguchi, Hiroaki Yoshimura, Takashi Matsubara,
- Abstract要約: 幾何学力学からポート・ハミルトニアンとポアソンの定式化を統一するディラック構造に基づく新しい枠組みを提案する。
PoDiNNは、未知の結合力学系をデータからモデル化する際の精度と解釈性を改善する。
- 参考スコア(独自算出の注目度): 13.499500088995463
- License:
- Abstract: Deep learning has achieved great success in modeling dynamical systems, providing data-driven simulators to predict complex phenomena, even without known governing equations. However, existing models have two major limitations: their narrow focus on mechanical systems and their tendency to treat systems as monolithic. These limitations reduce their applicability to dynamical systems in other domains, such as electrical and hydraulic systems, and to coupled systems. To address these limitations, we propose Poisson-Dirac Neural Networks (PoDiNNs), a novel framework based on the Dirac structure that unifies the port-Hamiltonian and Poisson formulations from geometric mechanics. This framework enables a unified representation of various dynamical systems across multiple domains as well as their interactions and degeneracies arising from couplings. Our experiments demonstrate that PoDiNNs offer improved accuracy and interpretability in modeling unknown coupled dynamical systems from data.
- Abstract(参考訳): ディープラーニングは動的システムのモデリングにおいて大きな成功をおさめ、既知の支配方程式がなくても複雑な現象を予測できるデータ駆動シミュレータを提供している。
しかし、既存のモデルには2つの大きな制限がある: 機械システムに焦点を絞ったことと、システムをモノリシックなものとして扱う傾向である。
これらの制限により、電気系や油圧系などの他の領域の力学系や結合系への適用性が低下する。
これらの制約に対処するために、幾何学力学からポート・ハミルトンとポアソンの定式化を統一するディラック構造に基づく新しいフレームワークであるPoDiNN(Poisson-Dirac Neural Networks)を提案する。
このフレームワークは、複数のドメインにまたがる様々な力学系の統一的な表現と、結合から生じる相互作用と退化を可能にする。
実験により,PoDiNNは未知の結合力学系をデータからモデル化する際の精度と解釈性の向上を実証した。
関連論文リスト
- Discovering Governing equations from Graph-Structured Data by Sparse Identification of Nonlinear Dynamical Systems [0.27624021966289597]
グラフ構造化データ(SINDyG)から動的システムのスパース同定法を開発した。
SINDyGは、ネットワーク構造をスパースレグレッションに組み込んで、基礎となるネットワーク力学を説明するモデルパラメータを識別する。
論文 参考訳(メタデータ) (2024-09-02T17:51:37Z) - Learning System Dynamics without Forgetting [60.08612207170659]
未知の力学を持つ系の軌道予測は、物理学や生物学を含む様々な研究分野において重要である。
本稿では,モードスイッチンググラフODE (MS-GODE) の新たなフレームワークを提案する。
生体力学の異なる多様な系を特徴とする生体力学システムの新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-30T14:55:18Z) - Learning Governing Equations of Unobserved States in Dynamical Systems [0.0]
我々は、部分的に観測された力学系の制御方程式を学習するために、ハイブリッドニューラルネットワークODE構造を用いる。
本手法は, 観測されていない状態の真の支配方程式の学習に有効であることを示す。
論文 参考訳(メタデータ) (2024-04-29T10:28:14Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Interpretable learning of effective dynamics for multiscale systems [5.754251195342313]
iLED(Interpretable Learning Effective Dynamics)の新たな枠組みを提案する。
iLEDは、最先端のリカレントニューラルネットワークベースのアプローチに匹敵する精度を提供する。
その結果、iLEDフレームワークは正確な予測を生成でき、解釈可能なダイナミクスを得ることができることがわかった。
論文 参考訳(メタデータ) (2023-09-11T20:29:38Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
我々は物理誘導型Deep Markov Model(PgDMM)という物理誘導型フレームワークを提案する。
提案手法は,動的システムの駆動物理を維持しながら,ディープラーニングの表現力を利用する。
論文 参考訳(メタデータ) (2021-10-16T16:35:12Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。