論文の概要: Generative Neural Reparameterization for Differentiable PDE-constrained Optimization
- arxiv url: http://arxiv.org/abs/2410.12683v1
- Date: Wed, 16 Oct 2024 15:46:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:43:04.296956
- Title: Generative Neural Reparameterization for Differentiable PDE-constrained Optimization
- Title(参考訳): 微分可能PDE制約最適化のための生成的ニューラルパラメータ化
- Authors: Archis S. Joglekar,
- Abstract要約: 部分微分方程式 (Partial-differential-equation, PDE) は、PDEが支配するシステムの最適パラメータを求める手法である。
本手法は,レーザー核融合に伴うレーザープラズマ不安定性を最小限に抑える最適パラメータを生成するニューラルネットワークの訓練に応用する。
- 参考スコア(独自算出の注目度): 1.450405446885067
- License:
- Abstract: Partial-differential-equation (PDE)-constrained optimization is a well-worn technique for acquiring optimal parameters of systems governed by PDEs. However, this approach is limited to providing a single set of optimal parameters per optimization. Given a differentiable PDE solver, if the free parameters are reparameterized as the output of a neural network, that neural network can be trained to learn a map from a probability distribution to the distribution of optimal parameters. This proves useful in the case where there are many well performing local minima for the PDE. We apply this technique to train a neural network that generates optimal parameters that minimize laser-plasma instabilities relevant to laser fusion and show that the neural network generates many well performing and diverse minima.
- Abstract(参考訳): 部分微分方程式 (Partial-differential-equation, PDE) は、PDEが支配するシステムの最適パラメータを求める手法である。
しかし、このアプローチは最適化毎に最適なパラメータのセットを1つだけ与えることに限られる。
微分可能なPDEソルバが与えられた場合、自由パラメータがニューラルネットワークの出力として再パラメータ化されると、ニューラルネットワークは確率分布から最適パラメータの分布へのマップ学習を訓練することができる。
これは、PDEの局所的なミニマが多数存在する場合に有用である。
本手法は,レーザー核融合に伴うレーザープラズマ不安定性を最小限に抑える最適パラメータを生成するニューラルネットワークのトレーニングに適用し,そのニューラルネットワークが多くの高性能で多様なミニマを生成することを示す。
関連論文リスト
- RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く応用されている。
本稿では,地域最適化としての新たな訓練パラダイムを提案し,理論的に検討する。
実践的なトレーニングアルゴリズムであるRerea Optimized PINN(RoPINN)は、この新しいパラダイムからシームレスに派生している。
論文 参考訳(メタデータ) (2024-05-23T09:45:57Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Efficient PDE-Constrained optimization under high-dimensional
uncertainty using derivative-informed neural operators [6.296120102486062]
大規模偏微分方程式(PDE)を高次元ランダムパラメータで解くための新しい枠組みを提案する。
我々は、そのようなニューラル演算子をマルチインプット還元ベースインフォメーションニューラル演算子(MR-DINO)と呼ぶ。
MR-DINOは103ドル~107ドルで実行時間を短縮し,標準PDEソリューションと同等の精度のOUUソリューションを生成可能であることを示す。
論文 参考訳(メタデータ) (2023-05-31T17:26:20Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Bi-level Physics-Informed Neural Networks for PDE Constrained
Optimization using Broyden's Hypergradients [29.487375792661005]
PDE制約最適化問題を解決するための新しい二段階最適化フレームワークを提案する。
内部ループ最適化では、PDE制約のみを解決するためにPINNを採用する。
外部ループに対しては,Implicit関数定理に基づく Broyden'simat 法を用いて新しい手法を設計する。
論文 参考訳(メタデータ) (2022-09-15T06:21:24Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
ニューラルネットワーク(NN)によって定義される関数に対する偏微分方程式(PDE)制約を強制する実践的手法を提案する。
我々は、任意のNNアーキテクチャに組み込むことができる微分可能なPDE制約層を開発した。
その結果、NNアーキテクチャに直接ハード制約を組み込むことで、制約のない目的のトレーニングに比べてテストエラーがはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-07-18T15:11:43Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - PDE-constrained Models with Neural Network Terms: Optimization and
Global Convergence [0.0]
近年の研究では、ディープラーニングを用いて、科学と工学における偏微分方程式(PDE)モデルを開発した。
ニューラルネットワークを用いた線形楕円型PDEの最適化について厳密に研究する。
ニューラルネットワークは,レイノルズ平均ナヴィエ・ストークス方程式の閉包モデルとして機能する流体力学への応用のために,ニューラルネットワークモデルを訓練する。
論文 参考訳(メタデータ) (2021-05-18T16:04:33Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - Two-Layer Neural Networks for Partial Differential Equations:
Optimization and Generalization Theory [4.243322291023028]
勾配降下法は二階線形PDEを解くための最小二乗最適化の大域最小化器を同定できることを示す。
また,2階線形PDEと2層ニューラルネットワークの最小二乗最適化の一般化誤差を解析した。
論文 参考訳(メタデータ) (2020-06-28T22:24:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。