論文の概要: Learning differentiable solvers for systems with hard constraints
- arxiv url: http://arxiv.org/abs/2207.08675v2
- Date: Tue, 18 Apr 2023 06:30:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-19 18:40:33.844959
- Title: Learning differentiable solvers for systems with hard constraints
- Title(参考訳): 制約付きシステムの微分可能解法学習
- Authors: Geoffrey N\'egiar, Michael W. Mahoney, Aditi S. Krishnapriyan
- Abstract要約: ニューラルネットワーク(NN)によって定義される関数に対する偏微分方程式(PDE)制約を強制する実践的手法を提案する。
我々は、任意のNNアーキテクチャに組み込むことができる微分可能なPDE制約層を開発した。
その結果、NNアーキテクチャに直接ハード制約を組み込むことで、制約のない目的のトレーニングに比べてテストエラーがはるかに少ないことがわかった。
- 参考スコア(独自算出の注目度): 48.54197776363251
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a practical method to enforce partial differential equation
(PDE) constraints for functions defined by neural networks (NNs), with a high
degree of accuracy and up to a desired tolerance. We develop a differentiable
PDE-constrained layer that can be incorporated into any NN architecture. Our
method leverages differentiable optimization and the implicit function theorem
to effectively enforce physical constraints. Inspired by dictionary learning,
our model learns a family of functions, each of which defines a mapping from
PDE parameters to PDE solutions. At inference time, the model finds an optimal
linear combination of the functions in the learned family by solving a
PDE-constrained optimization problem. Our method provides continuous solutions
over the domain of interest that accurately satisfy desired physical
constraints. Our results show that incorporating hard constraints directly into
the NN architecture achieves much lower test error when compared to training on
an unconstrained objective.
- Abstract(参考訳): ニューラルネットワーク(NN)によって定義される関数に対する偏微分方程式(PDE)制約を、高い精度で適用し、所望の許容範囲まで適用する実践的手法を提案する。
我々は、任意のNNアーキテクチャに組み込むことができる微分可能なPDE制約層を開発した。
本手法は,物理的制約を効果的に適用するために微分可能最適化と暗黙関数定理を利用する。
辞書学習にインスパイアされた我々のモデルは、PDEパラメータからPDEソリューションへのマッピングを定義する関数群を学習する。
推論時には、PDE制約の最適化問題を解くことにより、学習家族における関数の最適線形結合を求める。
提案手法は,所望の物理的制約を正確に満たした関心領域上の連続解を提供する。
その結果、NNアーキテクチャに直接ハード制約を組み込むことで、制約のない目的のトレーニングに比べてテストエラーがはるかに少ないことがわかった。
関連論文リスト
- Learning a Neural Solver for Parametric PDE to Enhance Physics-Informed Methods [14.791541465418263]
データに基づいて訓練された物理インフォームド反復アルゴリズムを用いて偏微分方程式(PDE)の解法を学習することを提案する。
本手法は,各PDEインスタンスに自動的に適応する勾配降下アルゴリズムの条件付けを学習する。
複数のデータセットに対する経験的実験により,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-10-09T12:28:32Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
広範にPDEを解くことができるUniversal PDEソルバ(Unisolver)を提案する。
私たちの重要な発見は、PDEソリューションが基本的に一連のPDEコンポーネントの制御下にあることです。
Unisolverは3つの挑戦的な大規模ベンチマークにおいて、一貫した最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-05-27T15:34:35Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Bi-level Physics-Informed Neural Networks for PDE Constrained
Optimization using Broyden's Hypergradients [29.487375792661005]
PDE制約最適化問題を解決するための新しい二段階最適化フレームワークを提案する。
内部ループ最適化では、PDE制約のみを解決するためにPINNを採用する。
外部ループに対しては,Implicit関数定理に基づく Broyden'simat 法を用いて新しい手法を設計する。
論文 参考訳(メタデータ) (2022-09-15T06:21:24Z) - Mitigating Learning Complexity in Physics and Equality Constrained
Artificial Neural Networks [0.9137554315375919]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
PINNでは、利害関係のPDEの残留形態とその境界条件は、軟罰として複合目的関数にまとめられる。
本稿では,この目的関数を定式化する方法が,異なる種類のPDEに適用した場合のPINNアプローチにおける厳しい制約の源であることを示す。
論文 参考訳(メタデータ) (2022-06-19T04:12:01Z) - Physics-constrained Unsupervised Learning of Partial Differential
Equations using Meshes [1.066048003460524]
グラフニューラルネットワークは、不規則にメッシュ化されたオブジェクトを正確に表現し、それらのダイナミクスを学ぶことを約束する。
本研究では、メッシュをグラフとして自然に表現し、グラフネットワークを用いてそれらを処理し、物理に基づく損失を定式化し、偏微分方程式(PDE)の教師なし学習フレームワークを提供する。
本フレームワークは, ソフトボディ変形のモデルベース制御など, PDEソルバをインタラクティブな設定に適用する。
論文 参考訳(メタデータ) (2022-03-30T19:22:56Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
本稿では,この目的関数の定式化方法が,PINNアプローチにおける厳密な制約の源であることを示す。
本稿では,逆問題と前方問題の両方に対処可能な多目的フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-30T05:55:35Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。