論文の概要: SAFREE: Training-Free and Adaptive Guard for Safe Text-to-Image And Video Generation
- arxiv url: http://arxiv.org/abs/2410.12761v1
- Date: Wed, 16 Oct 2024 17:32:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:44:44.298509
- Title: SAFREE: Training-Free and Adaptive Guard for Safe Text-to-Image And Video Generation
- Title(参考訳): SAFREE: 安全なテキスト対画像とビデオ生成のためのトレーニングフリーで適応型ガード
- Authors: Jaehong Yoon, Shoubin Yu, Vaidehi Patil, Huaxiu Yao, Mohit Bansal,
- Abstract要約: 安全な生成のための学習/編集に基づく手法は、モデルから有害な概念を取り除くが、いくつかの課題に直面している。
安全なT2IとT2VのためのトレーニングフリーアプローチであるSAFREEを提案する。
テキスト埋め込み空間における有毒な概念の集合に対応する部分空間を検出し、この部分空間から直ちに埋め込みを行う。
- 参考スコア(独自算出の注目度): 65.30207993362595
- License:
- Abstract: Recent advances in diffusion models have significantly enhanced their ability to generate high-quality images and videos, but they have also increased the risk of producing unsafe content. Existing unlearning/editing-based methods for safe generation remove harmful concepts from models but face several challenges: (1) They cannot instantly remove harmful concepts without training. (2) Their safe generation capabilities depend on collected training data. (3) They alter model weights, risking degradation in quality for content unrelated to toxic concepts. To address these, we propose SAFREE, a novel, training-free approach for safe T2I and T2V, that does not alter the model's weights. Specifically, we detect a subspace corresponding to a set of toxic concepts in the text embedding space and steer prompt embeddings away from this subspace, thereby filtering out harmful content while preserving intended semantics. To balance the trade-off between filtering toxicity and preserving safe concepts, SAFREE incorporates a novel self-validating filtering mechanism that dynamically adjusts the denoising steps when applying the filtered embeddings. Additionally, we incorporate adaptive re-attention mechanisms within the diffusion latent space to selectively diminish the influence of features related to toxic concepts at the pixel level. In the end, SAFREE ensures coherent safety checking, preserving the fidelity, quality, and safety of the output. SAFREE achieves SOTA performance in suppressing unsafe content in T2I generation compared to training-free baselines and effectively filters targeted concepts while maintaining high-quality images. It also shows competitive results against training-based methods. We extend SAFREE to various T2I backbones and T2V tasks, showcasing its flexibility and generalization. SAFREE provides a robust and adaptable safeguard for ensuring safe visual generation.
- Abstract(参考訳): 拡散モデルの最近の進歩は、高品質な画像やビデオを生成する能力を大幅に向上させたが、同時に、安全でないコンテンツを生成するリスクも高めた。
モデルから有害な概念を取り除き,(1)訓練なしでは即座に有害な概念を除去することはできない。
2) 安全な生成能力は, 収集したトレーニングデータに依存する。
(3) 重量をモデル化し, 有害な概念とは無関係な内容の品質低下を危険にさらす。
これらの問題に対処するために、安全T2IとT2Vのための新しいトレーニング不要アプローチであるSAFREEを提案し、モデルの重みを変えない。
具体的には、テキスト埋め込み空間における有害な概念の集合に対応する部分空間を検出し、この部分空間から即座に埋め込み、意図した意味を保ちながら有害なコンテンツをフィルタリングする。
SAFREEは、濾過毒性と安全概念のトレードオフのバランスをとるために、フィルター埋め込みを施す際の脱臭工程を動的に調整する、新しい自己バリデーションフィルタリング機構を取り入れている。
さらに,拡散潜在空間に適応的再配置機構を組み込んで,画素レベルでの有害な概念に関連する特徴の影響を選択的に低減する。
最終的に、SAFREEは、出力の忠実さ、品質、安全性を保ち、一貫性のある安全性チェックを保証する。
SAFREEは、トレーニング不要のベースラインと比較して、T2I世代における安全でないコンテンツを抑えるSOTA性能を実現し、高品質な画像を維持しながらターゲット概念を効果的にフィルタリングする。
また、トレーニングベースの手法に対する競争結果も示している。
SAFREEを様々なT2IバックボーンやT2Vタスクに拡張し、その柔軟性と一般化を示す。
SAFREEは、安全な視覚生成を保証するための堅牢で適応可能な安全ガードを提供する。
関連論文リスト
- AdvI2I: Adversarial Image Attack on Image-to-Image Diffusion models [20.37481116837779]
AdvI2Iは、入力画像を操作して拡散モデルを誘導し、NSFWコンテンツを生成する新しいフレームワークである。
ジェネレータを最適化して敵画像を作成することで、AdvI2Iは既存の防御機構を回避できる。
本稿では,AdvI2IとAdvI2I-Adaptiveの両方が,現行の安全対策を効果的に回避可能であることを示す。
論文 参考訳(メタデータ) (2024-10-28T19:15:06Z) - ShieldDiff: Suppressing Sexual Content Generation from Diffusion Models through Reinforcement Learning [7.099258248662009]
テキスト・ツー・イメージ(T2I)モデルは、不快な内容の安全でない画像を生成する可能性がある。
我々の研究では、T2IモデルからNSFW(職場では安全ではない)コンテンツ生成を排除することに重点を置いています。
本稿では,CLIP(Contrastive Language- Image Pre-Trening)とヌード報酬(nudity rewards)から構成される独自の報酬関数を提案する。
論文 参考訳(メタデータ) (2024-10-04T19:37:56Z) - EIUP: A Training-Free Approach to Erase Non-Compliant Concepts Conditioned on Implicit Unsafe Prompts [32.590822043053734]
非有毒なテキストは、暗黙の安全でないプロンプトと呼ばれる非準拠のイメージを生成するリスクを伴っている。
我々は、非準拠の概念を消去プロンプトに組み込む、単純で効果的なアプローチを提案する。
本手法は,画像の忠実度を高いスコアで評価しながら,優れた消去効果を示す。
論文 参考訳(メタデータ) (2024-08-02T05:17:14Z) - Direct Unlearning Optimization for Robust and Safe Text-to-Image Models [29.866192834825572]
モデルが潜在的に有害なコンテンツを生成する能力を取り除くために、未学習の技術が開発されている。
これらの手法は敵の攻撃によって容易に回避され、生成した画像の安全性を確保するには信頼性が低い。
T2IモデルからNot Safe For Work(NSFW)コンテンツを除去するための新しいフレームワークであるDirect Unlearning Optimization (DUO)を提案する。
論文 参考訳(メタデータ) (2024-07-17T08:19:11Z) - Reliable and Efficient Concept Erasure of Text-to-Image Diffusion Models [76.39651111467832]
本稿では,Reliable and Efficient Concept Erasure (RECE)を提案する。
派生した埋め込みによって表現される不適切なコンテンツを緩和するために、RECEはそれらをクロスアテンション層における無害な概念と整合させる。
新たな表現埋め込みの導出と消去を反復的に行い、不適切な概念の徹底的な消去を実現する。
論文 参考訳(メタデータ) (2024-07-17T08:04:28Z) - Latent Guard: a Safety Framework for Text-to-image Generation [64.49596711025993]
既存の安全対策は、容易に回避できるテキストブラックリストや有害なコンテンツ分類に基づいている。
テキスト・ツー・イメージ生成の安全性向上を目的としたフレームワークであるLatent Guardを提案する。
ブラックリストベースのアプローチにインスパイアされたLatent Guardは、T2Iモデルのテキストエンコーダの上に潜在空間を学習し、有害な概念の存在を確認することができる。
論文 参考訳(メタデータ) (2024-04-11T17:59:52Z) - Ring-A-Bell! How Reliable are Concept Removal Methods for Diffusion Models? [52.238883592674696]
Ring-A-Bellは、T2I拡散モデルのためのモデルに依存しないレッドチームツールである。
これは、不適切なコンテンツの生成に対応する拡散モデルに対する問題的プロンプトを特定する。
この結果から,安全プロンプトベンチマークの操作により,既存の安全メカニズムを回避できると考えられるプロンプトを変換できることが示唆された。
論文 参考訳(メタデータ) (2023-10-16T02:11:20Z) - Prompting4Debugging: Red-Teaming Text-to-Image Diffusion Models by Finding Problematic Prompts [63.61248884015162]
テキストと画像の拡散モデルは、高品質なコンテンツ生成において顕著な能力を示している。
本研究では,拡散モデルの問題を自動検出するツールとして,Prompting4 Debugging (P4D)を提案する。
この結果から,従来のセーフプロンプトベンチマークの約半数は,本来 "セーフ" と考えられていたので,実際に多くのデプロイされた安全機構を回避できることがわかった。
論文 参考訳(メタデータ) (2023-09-12T11:19:36Z) - Towards Safe Self-Distillation of Internet-Scale Text-to-Image Diffusion
Models [63.20512617502273]
テキストから画像への拡散モデルにおいて,問題のあるコンテンツ生成を防止するため,SDDと呼ばれる手法を提案する。
本手法は,画像の全体的な品質を劣化させることなく,生成した画像から有害なコンテンツをはるかに多く除去する。
論文 参考訳(メタデータ) (2023-07-12T07:48:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。