論文の概要: Tensor Decomposition with Unaligned Observations
- arxiv url: http://arxiv.org/abs/2410.14046v1
- Date: Thu, 17 Oct 2024 21:39:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:25:55.615674
- Title: Tensor Decomposition with Unaligned Observations
- Title(参考訳): 非整合観察によるテンソル分解
- Authors: Runshi Tang, Tamara Kolda, Anru R. Zhang,
- Abstract要約: アンアラインな観測モードは、再生カーネルヒルベルト空間(RKHS)の関数を用いて表現される
本稿では,2値型,整数値型,正値型など,データの種類を効果的に説明できる多元的損失関数を提案する。
また、$ell$ロス関数を使用する際の効率向上のためにスケッチアルゴリズムも導入された。
- 参考スコア(独自算出の注目度): 4.970364068620608
- License:
- Abstract: This paper presents a canonical polyadic (CP) tensor decomposition that addresses unaligned observations. The mode with unaligned observations is represented using functions in a reproducing kernel Hilbert space (RKHS). We introduce a versatile loss function that effectively accounts for various types of data, including binary, integer-valued, and positive-valued types. Additionally, we propose an optimization algorithm for computing tensor decompositions with unaligned observations, along with a stochastic gradient method to enhance computational efficiency. A sketching algorithm is also introduced to further improve efficiency when using the $\ell_2$ loss function. To demonstrate the efficacy of our methods, we provide illustrative examples using both synthetic data and an early childhood human microbiome dataset.
- Abstract(参考訳): 本稿では、不整合観測に対処する標準ポリアディックテンソル分解法を提案する。
非整合観察モードは、再生カーネルヒルベルト空間(RKHS)の関数を用いて表現される。
本稿では,2値型,整数値型,正値型など,データの種類を効果的に説明できる多元的損失関数を提案する。
さらに,非整合観測によるテンソル分解の最適化と,計算効率を向上させる確率勾配法を提案する。
スケッチアルゴリズムも導入され、$\ell_2$ロス関数を使用する際の効率をさらに向上する。
本手法の有効性を実証するために, 合成データと幼少期のヒトマイクロバイオームデータセットを用いて, イラストレーション例を提示する。
関連論文リスト
- A Structure-Preserving Kernel Method for Learning Hamiltonian Systems [3.594638299627404]
構造保存されたカーネルリッジ回帰法は、潜在的に高次元かつ非線形なハミルトン関数の回復を可能にする。
本稿では,勾配の線形関数を含む損失関数が要求される問題に対して,カーネル回帰法を拡張した。
固定正則化パラメータと適応正則化パラメータを用いて収束率を提供する完全誤差解析を行う。
論文 参考訳(メタデータ) (2024-03-15T07:20:21Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
信頼領域(TR)と立方体を用いた適応正則化は、非常に魅力的な理論的性質を持つことが証明されている。
TR法とARC法はヘッセン関数,勾配関数,関数値の非コンパクトな計算を同時に行うことができることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:29:58Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
実データと人工雑音のロジスティックな損失として目的を定式化することにより, ノイズコントラスト推定(NCE)を提案する。
本稿では,非正規化モデルの負の対数類似度を最適化するための直接的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-06-13T01:18:16Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Rigorous dynamical mean field theory for stochastic gradient descent
methods [17.90683687731009]
一階勾配法の一家系の正確な高次元に対する閉形式方程式を証明した。
これには勾配降下(SGD)やネステロフ加速度などの広く使われているアルゴリズムが含まれる。
論文 参考訳(メタデータ) (2022-10-12T21:10:55Z) - On the Benefits of Large Learning Rates for Kernel Methods [110.03020563291788]
本稿では,カーネル手法のコンテキストにおいて,現象を正確に特徴付けることができることを示す。
分離可能なヒルベルト空間における2次対象の最小化を考慮し、早期停止の場合、学習速度の選択が得られた解のスペクトル分解に影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2022-02-28T13:01:04Z) - Efficient Multidimensional Functional Data Analysis Using Marginal
Product Basis Systems [2.4554686192257424]
多次元関数データのサンプルから連続表現を学習するためのフレームワークを提案する。
本研究では, テンソル分解により, 得られた推定問題を効率的に解けることを示す。
我々は、ニューロイメージングにおける真のデータ応用で締めくくっている。
論文 参考訳(メタデータ) (2021-07-30T16:02:15Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z) - SGB: Stochastic Gradient Bound Method for Optimizing Partition Functions [15.33098084159285]
本稿では,学習環境における分割関数の最適化の問題に対処する。
本稿では,2次代理を持つ分割関数の上界に依存する有界偏化アルゴリズムの変種を提案する。
論文 参考訳(メタデータ) (2020-11-03T04:42:51Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
本稿では,2次フーリエ特徴に基づく導関数によるGP回帰のスケーリング手法を提案する。
我々は、近似されたカーネルと近似された後部の両方に適用される決定論的、非漸近的、指数関数的に高速な崩壊誤差境界を証明した。
論文 参考訳(メタデータ) (2020-03-05T14:33:20Z) - Nonlinear Functional Output Regression: a Dictionary Approach [1.8160945635344528]
本稿では,辞書上に拡張された関数の予測を学習する新しい辞書ベースの手法であるプロジェクション・ラーニング(PL)を紹介する。
PLは機能的損失に基づいて経験的リスクを最小限にする。
PLは特に計算コストとパフォーマンスのトレードオフを享受しています。
論文 参考訳(メタデータ) (2020-03-03T10:31:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。