論文の概要: Asymptotic spectrum of weighted sample covariance: another proof of spectrum convergence
- arxiv url: http://arxiv.org/abs/2410.14408v2
- Date: Thu, 13 Mar 2025 14:03:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 17:08:08.096864
- Title: Asymptotic spectrum of weighted sample covariance: another proof of spectrum convergence
- Title(参考訳): 重み付きサンプル共分散の漸近スペクトル-スペクトル収束の別の証明
- Authors: Benoit Oriol,
- Abstract要約: 我々は、スペクトルが重い尾を持つ有限標本でどのように振る舞うかを示す。
一般的な目的は、重み付きサンプル共分散の高次元スペクトルの詳細な紹介を提供することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose another proof of the high dimensional spectrum convergence of the weighted sample covariance, more concise and self-sufficient but with stronger, but reasonable assumptions. We explain and illustrates this theorem for different weight distributions and show how the spectrum behaves in finite samples with heavy tails. The general purpose is to provide a detailed introduction to the high dimensional spectrum of weighted sample covariance.
- Abstract(参考訳): 重み付きサンプル共分散の高次元スペクトル収束、より簡潔で自己十分であるが、より強いが合理的な仮定を持つ別の証明を提案する。
異なる重み分布に対するこの定理を説明し、重み付き有限標本においてスペクトルがどのように振る舞うかを示す。
一般的な目的は、重み付きサンプル共分散の高次元スペクトルの詳細な紹介を提供することである。
関連論文リスト
- Asymptotic non-linear shrinkage formulas for weighted sample covariance [0.0]
我々は、Ledoit と P'ech'e の精神における非線形収縮公式を計算する。
非線形収縮式の性能を実験的に示す。
また、この理論の頑健さを重み付き分布にテストする。
論文 参考訳(メタデータ) (2024-10-18T12:33:10Z) - WeSpeR: Population spectrum retrieval and spectral density estimation of weighted sample covariance [0.0]
重み付きサンプル共分散のスペクトル分布$F$が$mathbbR*$の連続密度を持つことを示す。
計算手順を提案し、$F$のサポートを判定し、その上で効率的なグリッドを定義する。
我々はこの手法を用いて、スペクトル密度を推定し、真のスペクトル共分散スペクトルを検索する$textitWeSpeR$アルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-10-18T12:26:51Z) - Unified Convergence Analysis for Score-Based Diffusion Models with Deterministic Samplers [49.1574468325115]
決定論的サンプリングのための統合収束分析フレームワークを提案する。
我々のフレームワークは$tilde O(d2/epsilon)$の反復複雑性を実現する。
また,Denoising Implicit Diffusion Models (DDIM) タイプのサンプルについて詳細な分析を行った。
論文 参考訳(メタデータ) (2024-10-18T07:37:36Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
連続時間マルコフ連鎖(CTMC)に基づくスコアベース離散拡散モデルの理論的側面について検討する。
本稿では,事前定義された時間点におけるスコア推定値を利用する離散時間サンプリングアルゴリズムを一般状態空間$[S]d$に導入する。
我々の収束解析はジルサノフ法を用いて離散スコア関数の重要な性質を確立する。
論文 参考訳(メタデータ) (2024-10-03T09:07:13Z) - High-Dimensional Kernel Methods under Covariate Shift: Data-Dependent Implicit Regularization [83.06112052443233]
本稿では,共変量シフト下での高次元におけるカーネルリッジの回帰について検討する。
バイアス分散分解により、再重み付け戦略が分散を減少させることができることを理論的に証明する。
偏見について,任意の偏見の正則化を解析し,偏見が正則化の異なる尺度で非常に異なる振る舞いをすることができることを示す。
論文 参考訳(メタデータ) (2024-06-05T12:03:27Z) - Flow matching achieves almost minimax optimal convergence [50.38891696297888]
フローマッチング (FM) は, シミュレーションのない生成モデルとして注目されている。
本稿では,大試料径のFMの収束特性を$p$-Wasserstein 距離で論じる。
我々は、FMが1leq p leq 2$でほぼ最小の収束率を達成できることを確立し、FMが拡散モデルに匹敵する収束率に達するという最初の理論的証拠を示す。
論文 参考訳(メタデータ) (2024-05-31T14:54:51Z) - Anomaly Detection with Variance Stabilized Density Estimation [49.46356430493534]
本稿では, 観測試料の確率を最大化するための分散安定化密度推定問題を提案する。
信頼性の高い異常検知器を得るために,分散安定化分布を学習するための自己回帰モデルのスペクトルアンサンブルを導入する。
我々は52のデータセットで広範なベンチマークを行い、我々の手法が最先端の結果につながることを示した。
論文 参考訳(メタデータ) (2023-06-01T11:52:58Z) - Mean-Square Analysis of Discretized It\^o Diffusions for Heavy-tailed
Sampling [17.415391025051434]
重み付きポインカーの不等式に関連する伊藤拡散の自然クラスを離散化することにより、重み付き分布のクラスからのサンプリングの複雑さを分析する。
平均二乗解析に基づいて、ワッサーシュタイン2計量のターゲット分布に近い分布が$epsilon$のサンプルを得るための反復複雑性を確立する。
論文 参考訳(メタデータ) (2023-03-01T15:16:03Z) - Spectral Feature Augmentation for Graph Contrastive Learning and Beyond [64.78221638149276]
グラフ(および画像)におけるコントラスト学習のための新しいスペクトル特徴論法を提案する。
各データビューに対して,特徴写像毎の低ランク近似を推定し,その近似を地図から抽出して補数を求める。
これは、2つの価値ある副産物(単に1つまたは2つのイテレーション)を楽しむ非標準パワーレジームである、ここで提案された不完全パワーイテレーションによって達成される。
グラフ/画像データセットの実験では、スペクトルフィーチャの増大がベースラインを上回ります。
論文 参考訳(メタデータ) (2022-12-02T08:48:11Z) - On the Semi-supervised Expectation Maximization [5.481082183778667]
ラベル付きおよびラベルなしサンプルからモデルを学習するための半教師付きケースに焦点を当てる。
本分析は, 指数族混合モデルにおいて, ラベル付き試料が収束率をいかに向上させるかを明らかにした。
論文 参考訳(メタデータ) (2022-11-01T15:42:57Z) - Tuning Stochastic Gradient Algorithms for Statistical Inference via
Large-Sample Asymptotics [18.93569692490218]
勾配アルゴリズムのチューニングは、一般化可能な理論ではなく、試行錯誤に基づくことが多い。
固定ステップの大きい平均化は、チューニングパラメータの選択に対して堅牢であることを示す。
我々は他の勾配モンテカルロアルゴリズムの体系的解析の基礎を築いた。
論文 参考訳(メタデータ) (2022-07-25T17:58:09Z) - Recover the spectrum of covariance matrix: a non-asymptotic iterative
method [0.0]
サンプル共分散はスペクトルに一貫したバイアスを持つことはよく知られており、例えばウィッシュアート行列のスペクトルはマルテンコ・パストゥル則に従う。
本研究では、このバイアスを積極的に排除し、中小次元の真のスペクトルを復元する反復アルゴリズム「集中」を導入する。
論文 参考訳(メタデータ) (2022-01-01T18:44:31Z) - Spectral learning of multivariate extremes [0.0]
多変量極度の依存構造を解析するためのスペクトルクラスタリングアルゴリズムを提案する。
本研究は,極端サンプルから構築したランダムな$k-アネレスト近傍グラフに基づくスペクトルクラスタリングの理論的性能について検討した。
角測度を学習するための簡易な一貫した推定手法を提案する。
論文 参考訳(メタデータ) (2021-11-15T14:33:06Z) - Deterministic Gibbs Sampling via Ordinary Differential Equations [77.42706423573573]
本稿では,自律的ODEとツールを用いた決定論的測度保存ダイナミクスの一般構築について述べる。
我々は、ハイブリッドモンテカルロや他の決定論的サンプルが、我々の理論の特別な場合としてどのように従うかを示す。
論文 参考訳(メタデータ) (2021-06-18T15:36:09Z) - Beyond Random Matrix Theory for Deep Networks [0.7614628596146599]
Wigner semi-circle と Marcenko-Pastur の分布は、しばしばディープニューラルネットワーク理論解析に使用されるが、経験的に観察されたスペクトル密度と一致するかを検討する。
観測されたスペクトル形状は, 外れ値が許容される場合でも, 理論的な予測から大きく逸脱することがわかった。
行列アンサンブルの新しいクラスとして、ランダムなウィグナー/ウィッシュアートアンサンブル生成物とパーコレーションされたウィグナー/ウィッシュアートアンサンブルを考える。
論文 参考訳(メタデータ) (2020-06-13T21:00:30Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z) - Profile Entropy: A Fundamental Measure for the Learnability and
Compressibility of Discrete Distributions [63.60499266361255]
離散分布のサンプルに対して、プロファイルエントロピーは推定、推論、圧縮の概念を統一する基本的な尺度であることを示す。
具体的には、プロファイルエントロピー a) は、最適自然推定器に対する分布を推定する速度を決定する; b) 任意のラベル不変分布コレクションに対する最適推定器と比較して全ての対称特性を推定する速度を特徴付ける; c) プロファイル圧縮の限界として機能する。
論文 参考訳(メタデータ) (2020-02-26T17:49:04Z) - Minimax Optimal Estimation of KL Divergence for Continuous Distributions [56.29748742084386]
Kullback-Leibler の同一および独立に分布するサンプルからの発散は、様々な領域において重要な問題である。
単純で効果的な推定器の1つは、これらのサンプル間の近辺 k に基づいている。
論文 参考訳(メタデータ) (2020-02-26T16:37:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。