論文の概要: Asymptotic non-linear shrinkage formulas for weighted sample covariance
- arxiv url: http://arxiv.org/abs/2410.14420v1
- Date: Fri, 18 Oct 2024 12:33:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:25:54.903370
- Title: Asymptotic non-linear shrinkage formulas for weighted sample covariance
- Title(参考訳): 重み付きサンプル共分散に対する漸近的非線形収縮公式
- Authors: Benoit Oriol,
- Abstract要約: 我々は、Ledoit と P'ech'e の精神における非線形収縮公式を計算する。
非線形収縮式の性能を実験的に示す。
また、この理論の頑健さを重み付き分布にテストする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We compute asymptotic non-linear shrinkage formulas for covariance and precision matrix estimators for weighted sample covariances, in the spirit of Ledoit and P\'ech\'e. We detail explicitly the formulas for exponentially-weighted sample covariances. Those new tools pave a way for applying non-linear shrinkage methods on weighted sample covariance. We show experimentally the performance of the asymptotic shrinkage formulas. Finally, we test the robustness of the theory to a heavy-tailed distributions.
- Abstract(参考訳): 重み付けされたサンプル共分散に対する共分散と精度行列推定のための漸近的非線形収縮公式をLedoitとP\'ech\'eの精神で計算する。
指数重み付きサンプル共分散の公式を詳細に述べる。
これらの新しいツールは、重み付きサンプル共分散に非線形収縮法を適用するための道を開いた。
本研究では, 漸近収縮式の性能を実験的に示す。
最後に、重み付き分布に対する理論の堅牢性をテストする。
関連論文リスト
- NETS: A Non-Equilibrium Transport Sampler [15.58993313831079]
我々は、Non-Equilibrium Transport Sampler (NETS)と呼ばれるアルゴリズムを提案する。
NETSはJarzynskiの平等に基づいて、重要サンプリング(AIS)の亜種と見なすことができる。
このドリフトは、様々な目的関数の最小化であり、全て偏りのない方法で推定できることを示す。
論文 参考訳(メタデータ) (2024-10-03T17:35:38Z) - Method-of-Moments Inference for GLMs and Doubly Robust Functionals under Proportional Asymptotics [30.324051162373973]
高次元一般化線形モデル(GLM)における回帰係数と信号対雑音比の推定について考察する。
我々は、推論対象の一貫性と漸近的正規性(CAN)推定を導出する。
理論的結果を数値実験と既存文献との比較で補完する。
論文 参考訳(メタデータ) (2024-08-12T12:43:30Z) - A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set [20.166217494056916]
制約的な仮定を課さずに共分散推定器を構築するための原理的手法を提案する。
頑健な推定器は効率的に計算可能で一貫したものであることを示す。
合成および実データに基づく数値実験により、我々の頑健な推定器は最先端の推定器と競合していることが示された。
論文 参考訳(メタデータ) (2024-05-30T15:01:18Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
近点法はその数値的安定性と不完全なチューニングに対する頑健性からかなりの関心を集めている。
本稿では,近位点法(SPPM)の幅広いバリエーションの包括的解析について述べる。
論文 参考訳(メタデータ) (2024-05-24T21:09:19Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
本研究では,所定の点における条件分散の値に関する仮説を検証し,留置手順を開発する。
既存の手法とは異なり、提案手法は分散自体の値だけでなく、対応する分散予測器の不確実性についても考慮することができる。
論文 参考訳(メタデータ) (2023-09-28T13:04:11Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
非線形微分方程式のドリフトと拡散係数の同定のための新しい非パラメトリック学習パラダイムを提案する。
鍵となる考え方は、基本的には、対応するフォッカー・プランク方程式のRKHSに基づく近似をそのような観測に適合させることである。
論文 参考訳(メタデータ) (2023-05-24T20:43:47Z) - Mean-Square Analysis of Discretized It\^o Diffusions for Heavy-tailed
Sampling [17.415391025051434]
重み付きポインカーの不等式に関連する伊藤拡散の自然クラスを離散化することにより、重み付き分布のクラスからのサンプリングの複雑さを分析する。
平均二乗解析に基づいて、ワッサーシュタイン2計量のターゲット分布に近い分布が$epsilon$のサンプルを得るための反復複雑性を確立する。
論文 参考訳(メタデータ) (2023-03-01T15:16:03Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - Generalization bounds for nonparametric regression with $\beta-$mixing
samples [3.680403821470857]
実験プロセスの独立性から依存するケースへの偏差不等式を直接的に拡張できる一連の結果を示す。
次に、これらの結果を非パラメトリック回帰における最小二乗誤差の偏差に関連する独立サンプルの不等式に適用する。
論文 参考訳(メタデータ) (2021-08-02T15:51:52Z) - On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and
Non-Asymptotic Concentration [115.1954841020189]
The inequality and non-asymptotic properties of approximation procedure with Polyak-Ruppert averaging。
一定のステップサイズと無限大となる反復数を持つ平均的反復数に対する中心極限定理(CLT)を証明する。
論文 参考訳(メタデータ) (2020-04-09T17:54:18Z) - Minimax Optimal Estimation of KL Divergence for Continuous Distributions [56.29748742084386]
Kullback-Leibler の同一および独立に分布するサンプルからの発散は、様々な領域において重要な問題である。
単純で効果的な推定器の1つは、これらのサンプル間の近辺 k に基づいている。
論文 参考訳(メタデータ) (2020-02-26T16:37:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。