Quantum information capacity in a 1D topological system
- URL: http://arxiv.org/abs/2410.14558v1
- Date: Fri, 18 Oct 2024 16:03:46 GMT
- Title: Quantum information capacity in a 1D topological system
- Authors: Leonardo A. Navarro-Labastida,
- Abstract summary: Thermal effects in a one-dimensional Su-Schrieffer-Hegger (SSH) topological insulator are studied.
We focus on quantum information processing (QIP) capacity for thermal ensembles.
- Score: 0.0
- License:
- Abstract: Thermal effects in a one-dimensional Su-Schrieffer-Hegger (SSH) topological insulator are studied. Particularly, we focus on quantum information processing (QIP) capacity for thermal ensembles. To evaluate QIP an optimized quantum Fisher information (OQFI) is introduced as a quantifier of entanglement and topological phases are calculated by a definition in real space for the electric polarization of mixture states. For the thermal ensemble, there is a relationship between the Fisher metric and the electric polarization in such a way that in the topological region, there is more entanglement, therefore, these generate more robustness and protection in the quantum information due to thermal effects. Also, long-range hopping effects are studied and it is found that in this case, the OQFI captures these topological phase transitions in the limit of low temperature by this formalism in real space.
Related papers
- Clustering of conditional mutual information and quantum Markov structure at arbitrary temperatures [0.0]
Recent investigations have unveiled exotic quantum phases that elude characterization by simple bipartite correlation functions.
In these phases, long-range entanglement arising from tripartite correlations plays a central role.
Our findings unveil that, even at low temperatures, a broad class of tripartite entanglement cannot manifest in the long-range regime.
arXiv Detail & Related papers (2024-07-08T11:30:12Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Coherence-enhanced single-qubit thermometry out of equilibrium [0.0]
We consider a finite-dimensional quantum system, employed as a quantum thermometer, in contact with a thermal inducing Markov bathian thermalization dynamics.
We prove that the sensitivity of the thermometer, quantified by the quantum Fisher information, is enhanced by the quantum coherence in its initial state.
arXiv Detail & Related papers (2024-05-23T11:11:01Z) - Topological quantum thermometry [0.0]
An optimal local quantum thermometer saturates the fundamental lower bound for the thermal state temperature estimation accuracy.
We show that the optimal local quantum thermometer can be realized in an experimentally feasible system of spinless fermions confined in a one-dimensional optical lattice.
arXiv Detail & Related papers (2023-11-24T14:49:44Z) - Quantum Fisher Information for Different States and Processes in Quantum
Chaotic Systems [77.34726150561087]
We compute the quantum Fisher information (QFI) for both an energy eigenstate and a thermal density matrix.
We compare our results with earlier results for a local unitary transformation.
arXiv Detail & Related papers (2023-04-04T09:28:19Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Critical quantum thermometry and its feasibility in spin systems [0.0]
We use the quantum Fisher information (QFI) approach to quantify the sensitivity in the temperature estimation.
We numerically calculate the QFI around the critical points for two experimentally-realizable systems.
arXiv Detail & Related papers (2022-04-06T11:21:39Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Spectroscopy and critical quantum thermometry in the ultrastrong
coupling regime [0.0]
We show that depending on the initial state of the coupled system, the vacuum Rabi splitting manifests significant asymmetries.
We obtain the ultimate bounds on the estimation of temperature that remain valid in the ultrastrong coupling regime.
arXiv Detail & Related papers (2020-09-04T03:29:05Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.