Constrained Recurrent Bayesian Forecasting for Crack Propagation
- URL: http://arxiv.org/abs/2410.14761v1
- Date: Fri, 18 Oct 2024 13:15:53 GMT
- Title: Constrained Recurrent Bayesian Forecasting for Crack Propagation
- Authors: Sara Yasmine Ouerk, Olivier Vo Van, Mouadh Yagoubi,
- Abstract summary: This paper introduces a robust Bayesian multi-horizon approach for predicting the temporal evolution of crack lengths on rails.
To enhance the model's reliability for railroad maintenance, specific constraints are incorporated.
The findings reveal a trade-off between prediction accuracy and constraint compliance, highlighting the nuanced decision-making process in model training.
- Score: 0.40964539027092917
- License:
- Abstract: Predictive maintenance of railway infrastructure, especially railroads, is essential to ensure safety. However, accurate prediction of crack evolution represents a major challenge due to the complex interactions between intrinsic and external factors, as well as measurement uncertainties. Effective modeling requires a multidimensional approach and a comprehensive understanding of these dynamics and uncertainties. Motivated by an industrial use case based on collected real data containing measured crack lengths, this paper introduces a robust Bayesian multi-horizon approach for predicting the temporal evolution of crack lengths on rails. This model captures the intricate interplay between various factors influencing crack growth. Additionally, the Bayesian approach quantifies both epistemic and aleatoric uncertainties, providing a confidence interval around predictions. To enhance the model's reliability for railroad maintenance, specific constraints are incorporated. These constraints limit non-physical crack propagation behavior and prioritize safety. The findings reveal a trade-off between prediction accuracy and constraint compliance, highlighting the nuanced decision-making process in model training. This study offers insights into advanced predictive modeling for dynamic temporal forecasting, particularly in railway maintenance, with potential applications in other domains.
Related papers
- Causally-Aware Spatio-Temporal Multi-Graph Convolution Network for Accurate and Reliable Traffic Prediction [5.200012764049096]
This study focuses on an instance of--temporal problem--traffic prediction--to demonstrate an advanced deep learning model for making accurate and reliable forecast.
We propose an end-to-end traffic prediction framework that leverages three primary components to accurate and reliable traffic predictions.
Experimental results on two real-world traffic datasets demonstrate that the method outperforms several state-of-the-art models in prediction accuracy.
arXiv Detail & Related papers (2024-08-23T14:35:54Z) - Uncertainty Quantification for Forward and Inverse Problems of PDEs via
Latent Global Evolution [110.99891169486366]
We propose a method that integrates efficient and precise uncertainty quantification into a deep learning-based surrogate model.
Our method endows deep learning-based surrogate models with robust and efficient uncertainty quantification capabilities for both forward and inverse problems.
Our method excels at propagating uncertainty over extended auto-regressive rollouts, making it suitable for scenarios involving long-term predictions.
arXiv Detail & Related papers (2024-02-13T11:22:59Z) - Rail Crack Propagation Forecasting Using Multi-horizons RNNs [0.46040036610482665]
The prediction of rail crack length propagation plays a crucial role in the maintenance and safety assessment of materials and structures.
Traditional methods rely on physical models and empirical equations such as Paris law.
In recent years, machine learning techniques, particularly Recurrent Neural Networks (RNNs), have emerged as promising methods for time series forecasting.
arXiv Detail & Related papers (2023-09-04T12:44:21Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Causality-oriented robustness: exploiting general additive interventions [3.871660145364189]
In this paper, we focus on causality-oriented robustness and propose Distributional Robustness via Invariant Gradients (DRIG)
In a linear setting, we prove that DRIG yields predictions that are robust among a data-dependent class of distribution shifts.
We extend our approach to the semi-supervised domain adaptation setting to further improve prediction performance.
arXiv Detail & Related papers (2023-07-18T16:22:50Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Discovering Predictable Latent Factors for Time Series Forecasting [39.08011991308137]
We develop a novel framework for inferring the intrinsic latent factors implied by the observable time series.
We introduce three characteristics, i.e., predictability, sufficiency, and identifiability, and model these characteristics via the powerful deep latent dynamics models.
Empirical results on multiple real datasets show the efficiency of our method for different kinds of time series forecasting.
arXiv Detail & Related papers (2023-03-18T14:37:37Z) - Uncertainty Quantification for Traffic Forecasting: A Unified Approach [21.556559649467328]
Uncertainty is an essential consideration for time series forecasting tasks.
In this work, we focus on quantifying the uncertainty of traffic forecasting.
We develop Deep S-Temporal Uncertainty Quantification (STUQ), which can estimate both aleatoric and relational uncertainty.
arXiv Detail & Related papers (2022-08-11T15:21:53Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Latent Causal Invariant Model [128.7508609492542]
Current supervised learning can learn spurious correlation during the data-fitting process.
We propose a Latent Causal Invariance Model (LaCIM) which pursues causal prediction.
arXiv Detail & Related papers (2020-11-04T10:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.