Gradient-Free Supervised Learning using Spike-Timing-Dependent Plasticity for Image Recognition
- URL: http://arxiv.org/abs/2410.16524v1
- Date: Mon, 21 Oct 2024 21:32:17 GMT
- Title: Gradient-Free Supervised Learning using Spike-Timing-Dependent Plasticity for Image Recognition
- Authors: Wei Xie,
- Abstract summary: An approach to supervised learning in spiking neural networks is presented using a gradient-free method combined with spike-timing-dependent plasticity for image recognition.
The proposed network architecture is scalable to multiple layers, enabling the development of more complex and deeper SNN models.
- Score: 3.087000217989688
- License:
- Abstract: An approach to supervised learning in spiking neural networks is presented using a gradient-free method combined with spike-timing-dependent plasticity for image recognition. The proposed network architecture is scalable to multiple layers, enabling the development of more complex and deeper SNN models. The effectiveness of this method is demonstrated by its application to the MNIST dataset, showing good learning accuracy. The proposed method provides a robust and efficient alternative to the backpropagation-based method in supervised learning.
Related papers
- Active Learning of Deep Neural Networks via Gradient-Free Cutting Planes [40.68266398473983]
In this work, we investigate an active learning scheme via a novel cutting-plane method for ReLULU networks of arbitrary depth.
We demonstrate that these algorithms can be extended to deep neural networks despite their non-linear convergence.
We exemplify the effectiveness of our proposed active learning method against popular deep active learning baselines via both data experiments and classification on real datasets.
arXiv Detail & Related papers (2024-10-03T02:11:35Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - Online Network Source Optimization with Graph-Kernel MAB [62.6067511147939]
We propose Grab-UCB, a graph- kernel multi-arms bandit algorithm to learn online the optimal source placement in large scale networks.
We describe the network processes with an adaptive graph dictionary model, which typically leads to sparse spectral representations.
We derive the performance guarantees that depend on network parameters, which further influence the learning curve of the sequential decision strategy.
arXiv Detail & Related papers (2023-07-07T15:03:42Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
We propose an adaptive convolutional dictionary network (ACDNet) for metal artifact reduction.
Our ACDNet can automatically learn the prior for artifact-free CT images via training data and adaptively adjust the representation kernels for each input CT image.
Our method inherits the clear interpretability of model-based methods and maintains the powerful representation ability of learning-based methods.
arXiv Detail & Related papers (2022-05-16T06:49:36Z) - SIRe-Networks: Skip Connections over Interlaced Multi-Task Learning and
Residual Connections for Structure Preserving Object Classification [28.02302915971059]
In this paper, we introduce an interlaced multi-task learning strategy, defined SIRe, to reduce the vanishing gradient in relation to the object classification task.
The presented methodology directly improves a convolutional neural network (CNN) by enforcing the input image structure preservation through auto-encoders.
To validate the presented methodology, a simple CNN and various implementations of famous networks are extended via the SIRe strategy and extensively tested on the CIFAR100 dataset.
arXiv Detail & Related papers (2021-10-06T13:54:49Z) - Enhancing Deep Neural Network Saliency Visualizations with Gradual
Extrapolation [0.0]
We propose an enhancement technique of the Class Activation Mapping methods like Grad-CAM or Excitation Backpropagation.
Our idea, called Gradual Extrapolation, can supplement any method that generates a heatmap picture by sharpening the output.
arXiv Detail & Related papers (2021-04-11T07:39:35Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z) - Attentive CutMix: An Enhanced Data Augmentation Approach for Deep
Learning Based Image Classification [58.20132466198622]
We propose Attentive CutMix, a naturally enhanced augmentation strategy based on CutMix.
In each training iteration, we choose the most descriptive regions based on the intermediate attention maps from a feature extractor.
Our proposed method is simple yet effective, easy to implement and can boost the baseline significantly.
arXiv Detail & Related papers (2020-03-29T15:01:05Z) - Deep Unfolding Network for Image Super-Resolution [159.50726840791697]
This paper proposes an end-to-end trainable unfolding network which leverages both learning-based methods and model-based methods.
The proposed network inherits the flexibility of model-based methods to super-resolve blurry, noisy images for different scale factors via a single model.
arXiv Detail & Related papers (2020-03-23T17:55:42Z) - Biologically-Motivated Deep Learning Method using Hierarchical
Competitive Learning [0.0]
I propose to introduce unsupervised competitive learning which only requires forward propagating signals as a pre-training method for CNNs.
The proposed method could be useful for a variety of poorly labeled data, for example, time series or medical data.
arXiv Detail & Related papers (2020-01-04T20:07:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.