論文の概要: Dynamic Adaptive Rank Space Exploration for Efficient Sentiment Analysis with Large Language Models
- arxiv url: http://arxiv.org/abs/2410.16589v1
- Date: Tue, 22 Oct 2024 00:14:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:30:29.194099
- Title: Dynamic Adaptive Rank Space Exploration for Efficient Sentiment Analysis with Large Language Models
- Title(参考訳): 大規模言語モデルを用いた効率的な感性分析のための動的適応ランク空間探索
- Authors: Hongcheng Ding, Fuzhen Hu, Xuanze Zhao, Zixiao Jiang, Shamsul Nahar Abdullah, Deshinta Arrova Dewi,
- Abstract要約: 大規模言語モデル(LLM)は、ニュアンスド言語パターンをキャプチャすることで感情分析の分野に革命をもたらした。
LLMを用いた効率的な感情分析のための動的適応ランク空間探索(DARSE)フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Sentiment analysis has become increasingly important for assessing public opinion and informing decision-making. Large language models (LLMs) have revolutionized this field by capturing nuanced language patterns. However, adapting LLMs to domain-specific sentiment analysis tasks remains challenging due to computational constraints and the need for optimal fine-tuning. To address these challenges, we propose a novel Dynamic Adaptive Rank Space Exploration (DARSE) framework for efficient and effective sentiment analysis using LLMs. DARSE consists of a coarse-grained greedy algorithm to identify the optimal rank range, a fine-grained exploration algorithm to refine rank selection, and a dynamic rank allocation method to determine the optimal rank combination for each LLM layer. Extensive experiments demonstrate that DARSE significantly improves sentiment analysis accuracy, achieving a 15.1% improvement in MSE and a 4.3% improvement in accuracy compared to previous work. Our framework strikes a balance between computational efficiency and model performance, making it a promising approach for sentiment analysis with LLMs.
- Abstract(参考訳): 世論の評価や意思決定のインフォームには、感性分析がますます重要になっている。
大規模言語モデル(LLM)は、ニュアンスド言語パターンをキャプチャすることでこの分野に革命をもたらした。
しかし、LLMをドメイン固有の感情分析タスクに適用することは、計算上の制約と最適な微調整の必要性のため、依然として困難である。
これらの課題に対処するために,LLMを用いた効率的な感情分析のための動的適応ランク空間探索(DARSE)フレームワークを提案する。
DARSEは、最適なランク範囲を特定するための粗粒度グリーディアルゴリズムと、ランク選択を洗練するためのきめ細かい探索アルゴリズムと、各LDM層に対して最適なランクの組み合わせを決定するための動的ランク割り当て方法からなる。
大規模な実験により、DARSEは感情分析の精度を著しく改善し、MSEの15.1%の改善と4.3%の精度向上を達成した。
我々のフレームワークは計算効率とモデル性能のバランスをとっており、LLMによる感情分析には有望なアプローチである。
関連論文リスト
- Reward-Guided Speculative Decoding for Efficient LLM Reasoning [80.55186052123196]
Reward-Guided Speculative Decoding (RSD)は,大規模言語モデル(LLM)における推論の効率向上を目的とした新しいフレームワークである。
RSDは、厳密な偏りを強制する既存の投機的復号法とは対照的に、制御されたバイアスをハイリワード出力の優先順位付けに取り入れている。
RSDは,対象モデルのみでの復号化に対して,高い効率向上を実現し,並列復号法よりも高い精度を実現している。
論文 参考訳(メタデータ) (2025-01-31T17:19:57Z) - LLM Program Optimization via Retrieval Augmented Search [71.40092732256252]
提案手法は,提案手法によって最適化されたビーム探索を行う検索アルゴリズムであるRetrieval Augmented Search (RAS) である。
我々は、RASが従来の最先端のブラックボックス適応戦略よりも1.8$times$パフォーマンスが高いことを示す。
また、トレーニング例を「アトミックな編集」に分解することで、解釈可能性を向上させるAEGISと呼ばれる手法を提案する。
論文 参考訳(メタデータ) (2025-01-31T06:34:47Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
大規模言語モデル(LLM)は言語理解と生成能力を大幅に改善した。
LLMは、高い計算およびストレージリソース要求のため、リソース制約のあるエッジデバイスにデプロイするのは難しい。
モデル性能を維持しつつ,計算コストとメモリコストを大幅に削減する構造的適応型プルーニング(SAAP)を提案する。
論文 参考訳(メタデータ) (2024-12-19T18:08:04Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
本稿では,自己監督的選好度損失とアライメント損失を組み合わせた自己監督的選好度損失を構成する,新しい自己監督的選好最適化(SPO)フレームワークを提案する。
その結果,SPOを既存の好み最適化手法とシームレスに統合し,最先端性能を実現することができた。
論文 参考訳(メタデータ) (2024-09-26T12:37:26Z) - Achieving Peak Performance for Large Language Models: A Systematic Review [0.0]
大規模言語モデル(LLM)は自然言語処理(NLP)において顕著な成功を収めた
モデルが1兆のパラメータ範囲に成長するにつれて、計算とメモリのコストは大幅に増加する。
これにより、多くの研究者がこれらのモデルのトレーニングや適用に必要なリソースにアクセスするのが難しくなる。
論文 参考訳(メタデータ) (2024-09-07T13:57:41Z) - On the Design and Analysis of LLM-Based Algorithms [74.7126776018275]
大規模言語モデル(LLM)はアルゴリズムのサブルーチンとして使用される。
LLMは素晴らしい経験的成功を収めた。
提案フレームワークは,LLMアルゴリズムの進歩を約束する。
論文 参考訳(メタデータ) (2024-07-20T07:39:07Z) - Large Language Model-Aided Evolutionary Search for Constrained Multiobjective Optimization [15.476478159958416]
我々は,制約付き多目的最適化問題に対する進化探索を強化するために,大規模言語モデル(LLM)を用いる。
私たちの目標は、進化の集団の収束を早めることです。
論文 参考訳(メタデータ) (2024-05-09T13:44:04Z) - Beyond Single-Model Views for Deep Learning: Optimization versus
Generalizability of Stochastic Optimization Algorithms [13.134564730161983]
本稿では、勾配降下(SGD)とその変種に着目し、ディープラーニングの最適化に新しいアプローチを採用する。
我々はSGDとその変種がSAMのような平らなミニマと同等の性能を示すことを示した。
本研究は、トレーニング損失とホールドアウト精度の関係、およびSGDとノイズ対応変種の性能について、いくつかの重要な知見を明らかにした。
論文 参考訳(メタデータ) (2024-03-01T14:55:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。