論文の概要: Controlled Low-Rank Adaptation with Subspace Regularization for Continued Training on Large Language Models
- arxiv url: http://arxiv.org/abs/2410.16801v1
- Date: Tue, 22 Oct 2024 08:27:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:30:25.925537
- Title: Controlled Low-Rank Adaptation with Subspace Regularization for Continued Training on Large Language Models
- Title(参考訳): 部分空間規則化による大言語モデルの継続学習のための低域適応制御
- Authors: Yuheng Lu, Bingshuo Qian, Caixia Yuan, Huixing Jiang, Xiaojie Wang,
- Abstract要約: 大規模言語モデル(LLM)は、自然言語処理において顕著な能力を示すが、新しいタスクを学ぶ際に破滅的な忘れに直面している。
本稿では,LoRA 構造上の部分空間正規化手法である Controlled LoRA (CLoRA) を提案する。
- 参考スコア(独自算出の注目度): 13.56631686493347
- License:
- Abstract: Large language models (LLMs) exhibit remarkable capabilities in natural language processing but face catastrophic forgetting when learning new tasks, where adaptation to a new domain leads to a substantial decline in performance on previous tasks. In this paper, we propose Controlled LoRA (CLoRA), a subspace regularization method on LoRA structure. Aiming to reduce the scale of output change while introduce minimal constraint on model capacity, CLoRA imposes constraint on the direction of updating matrix null space. Experimental results on commonly used LLM finetuning tasks reveal that CLoRA significantly outperforms existing LoRA subsequent methods on both in-domain and outdomain evaluations, highlighting the superority of CLoRA as a effective parameter-efficient finetuning method with catastrophic forgetting mitigating. Further investigation for model parameters indicates that CLoRA effectively balances the trade-off between model capacity and degree of forgetting.
- Abstract(参考訳): 大規模言語モデル(LLM)は、自然言語処理において顕著な能力を示すが、新しいタスクを学習する際に破滅的な忘れに直面し、新しいドメインへの適応によって以前のタスクのパフォーマンスが大幅に低下する。
本稿では,LoRA 構造上の部分空間正規化手法である Controlled LoRA (CLoRA) を提案する。
CLoRAは、モデルキャパシティの最小限の制約を導入しながら、出力変更の規模を小さくすることを目的として、行列ヌル空間を更新する方向の制約を課している。
LLMファインタニングタスクの実験結果から、CLoRAは既存のLoRA法よりも、ドメイン内およびドメイン外の両方で大幅に優れており、CLoRAの超越性は、破滅的忘れを緩和する効果的なパラメータ効率の高いファインタニング方法であることが明らかとなった。
モデルパラメータのさらなる調査は、CLoRAがモデルキャパシティと忘れ度の間のトレードオフを効果的にバランスしていることを示している。
関連論文リスト
- Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - Is Parameter Collision Hindering Continual Learning in LLMs? [50.57658782050275]
大規模言語モデル(LLM)は、複数のタスクを逐次学習する際に破滅的な忘れに悩まされることが多い。
CL問題に対処する上で,非衝突パラメータの構築はより重要な相互依存因子であることを示す。
低衝突速度を利用してLCMのCLを向上する単純なアプローチである非衝突低ランク適応(N-LoRA)を提案する。
論文 参考訳(メタデータ) (2024-10-14T05:54:11Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) は、下流タスクのための大規模な事前学習モデルに効果的に適応する、PEFT (Efficient Fine Tuning) 手法として人気がある。
モデル更新に低階テンソルパラメトリゼーションを用いる新しい手法を提案する。
提案手法は,大規模言語モデルの微調整に有効であり,比較性能を維持しつつ,パラメータ数の大幅な削減を実現している。
論文 参考訳(メタデータ) (2024-10-05T06:59:50Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) は低ランク行列のみを最適化することでモデルを微調整する効率的な方法である。
ロラ空間に平坦に見える解は、全パラメータ空間に鋭い方向が存在し、一般化性能を損なう可能性がある。
フルパラメータ空間の平坦領域に位置する低ランク適応を求める効率的なアプローチであるFlat-LoRAを提案する。
論文 参考訳(メタデータ) (2024-09-22T11:24:10Z) - Enhancing Parameter Efficiency and Generalization in Large-Scale Models: A Regularized and Masked Low-Rank Adaptation Approach [10.980433187379868]
低ランク適応(LoRA)は、良好な微調整結果を維持しつつ、資源消費を減らすために開発された。
本稿では,LoRA法により近似された行列更新の本質的な次元について検討し,本質的な次元を増大させることによる性能上の利点を明らかにする。
論文 参考訳(メタデータ) (2024-07-16T15:26:31Z) - OLoRA: Orthonormal Low-Rank Adaptation of Large Language Models [0.0]
Low-Rank Adaptation (LoRA)はこれらの問題を緩和するための有望な方法として登場した。
OLoRAはLLMトレーニングの収束を著しく加速する。
OLoRAは、様々な言語モデリングタスクで標準のLoRAよりもパフォーマンスが向上している。
論文 参考訳(メタデータ) (2024-06-03T20:37:27Z) - LoRA Dropout as a Sparsity Regularizer for Overfitting Control [18.992276878667997]
そこで本研究では,LoRA方式のドロップアウト機構を提案する。
適切な空間性は、経験的リスクと一般化リスクのギャップを狭めるのに役立ちます。
論文 参考訳(メタデータ) (2024-04-15T09:32:12Z) - ALoRA: Allocating Low-Rank Adaptation for Fine-tuning Large Language Models [8.251547772610301]
低ランク適応 (LoRA) の方法論を、低ランク適応 (AloRA) と呼ぶ革新的なアプローチに拡張する。
まず,各ランクの重要度を効果的に推定できる新しい手法であるAB-LoRAを提案する。
第2に、AB-LoRAによって導かれ、我々は徐々にLoRAのランクに多く負の影響を及ぼし、高いランクを必要とする重要なトランスフォーマーモジュールにローラの予算を割り当てる。
論文 参考訳(メタデータ) (2024-03-24T15:09:55Z) - PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation [65.268245109828]
我々はPRILoRAを導入し、各層ごとに異なるランクを線形に割り当て、トレーニングプロセスを通してプルーニングを行う。
8つのGLUEベンチマークで広範な実験を行い,PRILoRAの有効性を検証する。
論文 参考訳(メタデータ) (2024-01-20T20:25:17Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
本稿では,適応過程における固有ランクの動的調整を可能にする疎低ランク適応(SoRA)を提案する。
提案手法は,LoRAを高いランクで初期化すると同時に,一時的に増大するパラメータを効率的に利用することにより,LoRAの表現力を向上する。
実験の結果,SoRAは70%の保持パラメータと70%のトレーニング時間でも,他のベースラインよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-20T11:56:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。