論文の概要: Population stratification for prediction of mortality in post-AKI patients
- arxiv url: http://arxiv.org/abs/2410.17865v1
- Date: Wed, 23 Oct 2024 13:36:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:55:17.758565
- Title: Population stratification for prediction of mortality in post-AKI patients
- Title(参考訳): AKI後患者の死亡予測のための集団成層化
- Authors: Flavio S. Correa da Silva, Simon Sawhney,
- Abstract要約: 急性腎障害(AKI)は、入院患者の20%に影響を及ぼす重篤な臨床疾患である。
患者のリスクと医療費は、予測モデルと機械学習に基づくフォローアップ計画によって最小化できる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Acute kidney injury (AKI) is a serious clinical condition that affects up to 20% of hospitalised patients. AKI is associated with short term unplanned hospital readmission and post-discharge mortality risk. Patient risk and healthcare expenditures can be minimised by followup planning grounded on predictive models and machine learning. Since AKI is multi-factorial, predictive models specialised in different categories of patients can increase accuracy of predictions. In the present article we present some results following this approach.
- Abstract(参考訳): 急性腎障害(AKI)は、入院患者の20%に影響を及ぼす重篤な臨床疾患である。
AKIは、短期的に計画されていない病院の入院と、退院後の死亡リスクと関連している。
患者のリスクと医療費は、予測モデルと機械学習に基づくフォローアップ計画によって最小化できる。
AKIは多因子モデルであるため、様々なカテゴリーの患者に特化している予測モデルは、予測の精度を高めることができる。
本稿では,本研究の成果について述べる。
関連論文リスト
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Random Forest-Based Prediction of Stroke Outcome [7.090384254446659]
入院後3ヶ月の死亡率と死亡率の予測に機械学習を用いて予測モデルを生成する。
結論として、機械学習RFアルゴリズムは脳卒中患者の死亡率と死亡率の長期予後予測に有効である。
論文 参考訳(メタデータ) (2024-02-01T14:54:17Z) - Prediction of Post-Operative Renal and Pulmonary Complications Using
Transformers [69.81176740997175]
術後急性腎不全,肺合併症,院内死亡の予測におけるトランスフォーマーモデルの有用性について検討した。
以上の結果から,トランスフォーマーモデルにより術後合併症の予測や従来の機械学習モデルよりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-06-01T14:08:05Z) - Hospital transfer risk prediction for COVID-19 patients from a
medicalized hotel based on Diffusion GraphSAGE [7.021489981474361]
台湾では、軽度または軽度症状のある新型コロナウイルス患者の隔離施設として医療ホテルが開設された。
これらのホテルで利用可能な医療が限られているため、臨床劣化のリスクがある患者を特定することが最重要である。
本研究は, 医用ホテルにおける進行病院転院リスク予測のためのグラフベース深層学習手法の開発と評価を目的とした。
論文 参考訳(メタデータ) (2022-12-31T14:59:35Z) - Boosting the interpretability of clinical risk scores with intervention
predictions [59.22442473992704]
本稿では、今後の介入に関するモデルの仮定を明確に伝達する手段として、介入政策と有害事象リスクの合同モデルを提案する。
死亡確率などの典型的なリスクスコアと将来の介入確率スコアとを組み合わせることで、より解釈可能な臨床予測がもたらされることを示す。
論文 参考訳(メタデータ) (2022-07-06T19:49:42Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
本稿では,電子健康記録の医用テキストを予測に用いる新しい手法を提案する。
外部知識グラフによって強化された多視点グラフを有する患者の退院サマリーを表現している。
実験により,本手法の有効性が証明され,最先端の性能が得られた。
論文 参考訳(メタデータ) (2021-12-19T01:45:57Z) - Process Mining Model to Predict Mortality in Paralytic Ileus Patients [0.0]
麻痺性イレウス(PI)患者は集中治療室(ICU)に入院すると死亡リスクが高く、死亡率は40%に達する。
当科では入院24時間後のICU患者の死亡率予測におけるパフォーマンス改善について検討した。
論文 参考訳(メタデータ) (2021-08-03T03:09:13Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
既存の結果予測モデルは、頻繁なポジティブな結果の低いリコールに悩まされる。
我々は、死亡率とICUの受け入れによって表される逆さを自動的に予測する、高度にスケーリング可能な、堅牢な機械学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-18T15:56:28Z) - Parkland Trauma Index of Mortality (PTIM): Real-time Predictive Model
for PolyTrauma Patients [0.0]
Parkland Trauma Index of Mortality (PTIM)は、電子カルテ(EMR)データを用いて死亡率を予測する機械学習アルゴリズムである。
モデルは毎時更新され、外傷に対する患者の生理的反応とともに進化する。
入院早期のポリトラウマ患者の臨床的意思決定に有用なツールかもしれない。
論文 参考訳(メタデータ) (2020-10-07T20:34:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。