論文の概要: Estimating the Spectral Moments of the Kernel Integral Operator from Finite Sample Matrices
- arxiv url: http://arxiv.org/abs/2410.17998v2
- Date: Thu, 24 Oct 2024 17:47:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:52:27.478552
- Title: Estimating the Spectral Moments of the Kernel Integral Operator from Finite Sample Matrices
- Title(参考訳): 有限サンプル行列を用いたカーネル積分演算子のスペクトルモーメントの推定
- Authors: Chanwoo Chun, SueYeon Chung, Daniel D. Lee,
- Abstract要約: 本稿では,カーネル積分作用素のスペクトルモーメントを無限入力と特徴の極限で非バイアスで推定するアルゴリズムを提案する。
動的プログラミングに基づく本手法は,演算子スペクトルのモーメントを推定できる。
- 参考スコア(独自算出の注目度): 16.331196225467707
- License:
- Abstract: Analyzing the structure of sampled features from an input data distribution is challenging when constrained by limited measurements in both the number of inputs and features. Traditional approaches often rely on the eigenvalue spectrum of the sample covariance matrix derived from finite measurement matrices; however, these spectra are sensitive to the size of the measurement matrix, leading to biased insights. In this paper, we introduce a novel algorithm that provides unbiased estimates of the spectral moments of the kernel integral operator in the limit of infinite inputs and features from finitely sampled measurement matrices. Our method, based on dynamic programming, is efficient and capable of estimating the moments of the operator spectrum. We demonstrate the accuracy of our estimator on radial basis function (RBF) kernels, highlighting its consistency with the theoretical spectra. Furthermore, we showcase the practical utility and robustness of our method in understanding the geometry of learned representations in neural networks.
- Abstract(参考訳): 入力データ分布からサンプル特徴の構造を分析することは、入力数と特徴量の両方で限られた測定値によって制約される場合、困難である。
従来のアプローチは、有限の測定行列から導かれるサンプル共分散行列の固有値スペクトルに依存することが多いが、これらのスペクトルは測定行列のサイズに敏感であり、偏りのある洞察をもたらす。
本稿では,無限入力の極限におけるカーネル積分作用素のスペクトルモーメントの偏りのない推定値と有限サンプル測定行列の特徴を提供するアルゴリズムを提案する。
動的プログラミングに基づく本手法は,演算子スペクトルのモーメントを推定できる。
我々は,放射基底関数(RBF)カーネル上での推定器の精度を実証し,理論スペクトルとの整合性を強調した。
さらに,ニューラルネットワークにおける学習表現の幾何学的構造を理解する上で,本手法の実用性とロバスト性を示す。
関連論文リスト
- Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
拡張ビジョン技術は、しばしばその解釈に挑戦する。
データ立方体スペクトルの巨大な次元性は、その統計的解釈において複雑なタスクを生じさせる。
本稿では,符号化空間における教師なしクラスタリング手法の適用の可能性について検討する。
統計的次元削減はアドホック訓練(可変)オートエンコーダで行い、クラスタリング処理は(学習可能な)反復K-Meansクラスタリングアルゴリズムで行う。
論文 参考訳(メタデータ) (2024-01-31T09:31:28Z) - Quantum tomography of helicity states for general scattering processes [55.2480439325792]
量子トモグラフィーは、物理学における量子系の密度行列$rho$を計算するのに欠かせない道具となっている。
一般散乱過程におけるヘリシティ量子初期状態の再構成に関する理論的枠組みを提案する。
論文 参考訳(メタデータ) (2023-10-16T21:23:42Z) - Spectral Estimators for Structured Generalized Linear Models via Approximate Message Passing [28.91482208876914]
本研究では,高次元一般化線形モデルにおけるパラメータ推定の問題について考察する。
広く使われているにもかかわらず、厳密なパフォーマンス特性とデータ前処理の原則が、構造化されていない設計でのみ利用可能である。
論文 参考訳(メタデータ) (2023-08-28T11:49:23Z) - An evaluation framework for dimensionality reduction through sectional
curvature [59.40521061783166]
本研究は,非教師付き次元減少性能指標を初めて導入することを目的としている。
その実現可能性をテストするために、この測定基準は最もよく使われる次元削減アルゴリズムの性能を評価するために用いられている。
新しいパラメータ化問題インスタンスジェネレータが関数ジェネレータの形式で構築されている。
論文 参考訳(メタデータ) (2023-03-17T11:59:33Z) - Quantitative deterministic equivalent of sample covariance matrices with
a general dependence structure [0.0]
我々は、次元とスペクトルパラメータの両方を含む量的境界を証明し、特に実正の半直線に近づくことを可能にする。
応用として、これらの一般モデルの経験スペクトル分布のコルモゴロフ距離の収束の新しい境界を得る。
論文 参考訳(メタデータ) (2022-11-23T15:50:31Z) - Spectral Decomposition Representation for Reinforcement Learning [100.0424588013549]
本稿では, スペクトル分解表現法(SPEDER)を提案する。この手法は, データ収集ポリシーに急激な依存を生じさせることなく, ダイナミックスから状態-作用の抽象化を抽出する。
理論的解析により、オンライン設定とオフライン設定の両方において提案アルゴリズムのサンプル効率が確立される。
実験により、いくつかのベンチマークで現在の最先端アルゴリズムよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-08-19T19:01:30Z) - Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency [111.83670279016599]
部分観察決定過程(POMDP)の無限観測および状態空間を用いた強化学習について検討した。
線形構造をもつPOMDPのクラスに対する部分可観測性と関数近似の最初の試みを行う。
論文 参考訳(メタデータ) (2022-04-20T21:15:38Z) - Quantum Algorithms for Data Representation and Analysis [68.754953879193]
機械学習におけるデータ表現のための固有problemsの解を高速化する量子手続きを提供する。
これらのサブルーチンのパワーと実用性は、主成分分析、対応解析、潜在意味解析のための入力行列の大きさのサブ線形量子アルゴリズムによって示される。
その結果、入力のサイズに依存しない実行時のパラメータは妥当であり、計算モデル上の誤差が小さいことが示され、競合的な分類性能が得られる。
論文 参考訳(メタデータ) (2021-04-19T00:41:43Z) - A simpler spectral approach for clustering in directed networks [1.52292571922932]
隣接行列の固有値/固有ベクトル分解は、すべての一般的な方法よりも単純であることを示す。
広く使われているk平均アルゴリズムよりもガウス混合クラスタリングの方が優れていることを示す数値的な証拠を提供する。
論文 参考訳(メタデータ) (2021-02-05T14:16:45Z) - Spectral Methods for Data Science: A Statistical Perspective [37.2486912080998]
スペクトル法は、巨大でノイズの多い不完全なデータから情報を抽出するための単純で驚くほど効果的な手法として登場した。
この本は、現代の統計学的観点から、体系的で包括的でアクセスしやすいスペクトル法の導入を意図している。
論文 参考訳(メタデータ) (2020-12-15T18:40:56Z) - Spectral Flow on the Manifold of SPD Matrices for Multimodal Data
Processing [17.162497914078322]
我々は,観測された現象の相補的側面と特徴を捉えるマルチモーダルセンサが取得したデータについて考察する。
本研究は,各測定基準が相互に変動する要因を共有するが,他の測定基準によって汚染される可能性があるシナリオに焦点を当てる。
論文 参考訳(メタデータ) (2020-09-17T04:38:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。