論文の概要: Inferring stability properties of chaotic systems on autoencoders' latent spaces
- arxiv url: http://arxiv.org/abs/2410.18003v1
- Date: Wed, 23 Oct 2024 16:25:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:54:36.776609
- Title: Inferring stability properties of chaotic systems on autoencoders' latent spaces
- Title(参考訳): 自己エンコーダの潜伏空間上のカオス系の安定性の推論
- Authors: Elise Özalp, Luca Magri,
- Abstract要約: カオスシステムと乱流では、畳み込みオートエンコーダとエコー状態ネットワーク(CAE-ESN)がダイナミクスの予測に成功した。
CAE-ESNモデルは、低次元多様体における空間ベクトルの不変安定性と幾何学を推論することを示した。
この研究は、潜在空間における高次元カオスシステムの安定性を推測する新たな機会を開く。
- 参考スコア(独自算出の注目度): 4.266376725904727
- License:
- Abstract: The data-driven learning of solutions of partial differential equations can be based on a divide-and-conquer strategy. First, the high dimensional data is compressed to a latent space with an autoencoder; and, second, the temporal dynamics are inferred on the latent space with a form of recurrent neural network. In chaotic systems and turbulence, convolutional autoencoders and echo state networks (CAE-ESN) successfully forecast the dynamics, but little is known about whether the stability properties can also be inferred. We show that the CAE-ESN model infers the invariant stability properties and the geometry of the tangent space in the low-dimensional manifold (i.e. the latent space) through Lyapunov exponents and covariant Lyapunov vectors. This work opens up new opportunities for inferring the stability of high-dimensional chaotic systems in latent spaces.
- Abstract(参考訳): 偏微分方程式の解に関するデータ駆動学習は、分割・対数戦略に基づくことができる。
第一に、高次元データをオートエンコーダで潜時空間に圧縮し、第二に、時間的ダイナミクスを反復ニューラルネットワークの形で潜時空間に推論する。
カオスシステムと乱流では、畳み込み自己エンコーダとエコー状態ネットワーク(CAE-ESN)がダイナミクスの予測に成功したが、安定性の性質も推測できるかどうかはほとんど分かっていない。
CAE-ESNモデルは、リアプノフ指数と共変リアプノフベクトルを通して、低次元多様体(すなわち、潜在空間)における接空間の不変安定性と幾何学を推論することを示した。
この研究は、潜在空間における高次元カオスシステムの安定性を推測する新たな機会を開く。
関連論文リスト
- Stability analysis of chaotic systems in latent spaces [4.266376725904727]
潜在空間アプローチはカオス偏微分方程式の解を推測できることを示す。
また、物理系の安定性を予測できる。
論文 参考訳(メタデータ) (2024-10-01T08:09:14Z) - Input-to-State Stable Coupled Oscillator Networks for Closed-form Model-based Control in Latent Space [2.527926867319859]
我々は、制御理論の文献から強力でよく理解された閉形式戦略を活用することが有望な道であると論じる。
既存の潜在空間モデルにおける3つの根本的な欠点は、これまでこの強力な組み合わせを妨げてきた。
これらすべての問題に同時に取り組む新しい結合ネットワーク(CON)モデルを提案する。
論文 参考訳(メタデータ) (2024-09-13T00:11:09Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
拡散モデル(DM)は、連続入力のための最先端の生成モデルを表す。
我々はtextbfphase space dynamics に基づく新しい生成モデリングフレームワークを提案する。
我々のフレームワークは、動的伝播の初期段階において、現実的なデータポイントを生成する能力を示す。
論文 参考訳(メタデータ) (2023-10-11T18:38:28Z) - Machine learning in and out of equilibrium [58.88325379746631]
我々の研究は、統計物理学から適応したフォッカー・プランク法を用いて、これらの平行線を探索する。
我々は特に、従来のSGDでは平衡が切れている長期的限界におけるシステムの定常状態に焦点を当てる。
本稿では,ミニバッチの置き換えを伴わない新しいランゲヴィンダイナミクス(SGLD)を提案する。
論文 参考訳(メタデータ) (2023-06-06T09:12:49Z) - Reconstruction, forecasting, and stability of chaotic dynamics from
partial data [4.266376725904727]
本研究では,部分的な観測から隠れカオス変数の力学を推定するためのデータ駆動手法を提案する。
提案するネットワークは,時間的・統計的に隠れた変数を予測できることを示す。
この研究は、完全な状態を再構築し、隠れた変数を推論し、部分的なデータからカオスシステムの安定性を計算する新しい機会を開く。
論文 参考訳(メタデータ) (2023-05-24T13:01:51Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Learning High-Dimensional Distributions with Latent Neural Fokker-Planck
Kernels [67.81799703916563]
低次元潜在空間におけるフォッカー・プランク方程式の解法として問題を定式化する新しい手法を導入する。
提案モデルでは,潜在分散モーフィング,ジェネレータ,パラメータ化Fokker-Planckカーネル関数からなる。
論文 参考訳(メタデータ) (2021-05-10T17:42:01Z) - Stochastic embeddings of dynamical phenomena through variational
autoencoders [1.7205106391379026]
位相空間の再構成において,観測空間の次元性を高めるために認識ネットワークを用いる。
我々の検証は、このアプローチが元の状態空間に類似した状態空間を復元するだけでなく、新しい時系列を合成できることを示している。
論文 参考訳(メタデータ) (2020-10-13T10:10:24Z) - Phase space learning with neural networks [0.0]
本研究では、部分微分方程式(PDE)を解く投影型手法の非線形一般化としてのオートエンコーダニューラルネットワークを提案する。
提案したディープラーニングアーキテクチャは、中間再構成なしに非常に少ない潜在空間に完全に統合することでPDEのダイナミクスを生成でき、その後、潜在解を元の空間に復号することができる。
単一経路のサンプルデータから動的システムの位相空間のグローバルな特性を学習するために、適切に正規化されたニューラルネットワークの信頼性と、目に見えない分岐を予測する能力を示す。
論文 参考訳(メタデータ) (2020-06-22T20:28:07Z) - Deep Variational Luenberger-type Observer for Stochastic Video
Prediction [46.82873654555665]
本研究では,状態空間モデルの解釈可能性とディープニューラルネットワークの表現を組み合わせ,映像予測の課題について検討する。
我々のモデルは,入力映像を潜時特徴空間に変換する変分エンコーダと,潜時特徴の動的進化を捉えたルエンベルガー型オブザーバの上に構築されている。
論文 参考訳(メタデータ) (2020-02-12T06:59:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。