論文の概要: Data Publishing in Mechanics and Dynamics: Challenges, Guidelines, and Examples from Engineering Design
- arxiv url: http://arxiv.org/abs/2410.18358v1
- Date: Mon, 07 Oct 2024 18:26:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-27 05:40:51.867867
- Title: Data Publishing in Mechanics and Dynamics: Challenges, Guidelines, and Examples from Engineering Design
- Title(参考訳): メカニクスとダイナミクスにおけるデータパブリッシング:工学設計からの挑戦,ガイドライン,例
- Authors: Henrik Ebel, Jan van Delden, Timo Lüddecke, Aditya Borse, Rutwik Gulakala, Marcus Stoffel, Manish Yadav, Merten Stender, Leon Schindler, Kristin Miriam de Payrebrune, Maximilian Raff, C. David Remy, Benedict Röder, Peter Eberhard,
- Abstract要約: 本稿では、力学および力学におけるデータパブリッシングの価値と課題を分析する。
後者は、データ駆動手法が元来ブームになっている分野では一般的ではない課題や考察も提起している。
- 参考スコア(独自算出の注目度): 4.065325208853021
- License:
- Abstract: Data-based methods have gained increasing importance in engineering, especially but not only driven by successes with deep artificial neural networks. Success stories are prevalent, e.g., in areas such as data-driven modeling, control and automation, as well as surrogate modeling for accelerated simulation. Beyond engineering, generative and large-language models are increasingly performing and helping with tasks that, previously, were solely associated with creative human processes. Thus, it seems timely to seek artificial-intelligence-support for engineering design tasks to automate, help with, or accelerate purpose-built designs of engineering systems, e.g., in mechanics and dynamics, where design so far requires a lot of specialized knowledge. However, research-wise, compared to established, predominantly first-principles-based methods, the datasets used for training, validation, and test become an almost inherent part of the overall methodology. Thus, data publishing becomes just as important in (data-driven) engineering science as appropriate descriptions of conventional methodology in publications in the past. This article analyzes the value and challenges of data publishing in mechanics and dynamics, in particular regarding engineering design tasks, showing that the latter raise also challenges and considerations not typical in fields where data-driven methods have been booming originally. Possible ways to deal with these challenges are discussed and a set of examples from across different design problems shows how data publishing can be put into practice. The analysis, discussions, and examples are based on the research experience made in a priority program of the German research foundation focusing on research on artificially intelligent design assistants in mechanics and dynamics.
- Abstract(参考訳): データベースの手法は、特に深層人工ニューラルネットワークの成功によってもたらされるだけでなく、エンジニアリングにおいて重要性が増している。
例えば、データ駆動モデリング、制御と自動化、加速されたシミュレーションのための代理モデリングといった分野では、成功ストーリが一般的です。
エンジニアリング以外にも、生成モデルや大規模言語モデルは、これまでは創造的な人間のプロセスにのみ関連付けられていたタスクの実行と支援をますます進めている。
したがって、これまで設計に多くの専門知識を必要とする力学や力学において、エンジニアリングシステムのための設計を自動化する、支援する、あるいは加速するためのエンジニアリング設計タスクのための人工知能支援を求めるのは、時期尚早のようだ。
しかしながら、研究面では、確立された、主に第一原理に基づく手法と比較して、トレーニング、検証、テストに使用されるデータセットは、全体的な方法論のほぼ本質的な部分となる。
このように、データパブリッシングは、過去の出版物における従来の方法論の適切な記述と同じくらい、(データ駆動の)エンジニアリング科学において重要である。
本稿では、メカニックスやダイナミックスにおけるデータパブリッシングの価値と課題、特にエンジニアリング設計タスクについて分析し、データ駆動手法がもともとブームになった分野では一般的ではない分野においても、後者が課題や考察を提起していることを示す。
これらの課題に対処する方法が議論され、さまざまな設計問題の一連の例が、データパブリッシングの実践方法を示している。
この分析、議論、例は、機械力学と力学における人工的インテリジェントデザインアシスタントの研究に焦点を当てたドイツの研究財団の優先プログラムで行われた研究経験に基づいている。
関連論文リスト
- Search, Verify and Feedback: Towards Next Generation Post-training Paradigm of Foundation Models via Verifier Engineering [51.31836988300326]
検証工学は、基礎モデルの時代のために特別に設計された新しいポストトレーニングパラダイムである。
検証工学のプロセスは,検索,検証,フィードバックの3段階に分類する。
論文 参考訳(メタデータ) (2024-11-18T12:04:52Z) - Deep Learning and Machine Learning: Advancing Big Data Analytics and Management with Design Patterns [17.624263707781655]
この本は、ビッグデータ分析システムの開発、メンテナンス、スケーラビリティを最適化するための、古典的なソフトウェアエンジニアリングパターンの適用について説明している。
モデル管理、デプロイメント戦略、チームコラボレーションへの影響について、シングルトン、ファクトリ、オブザーバ、ストラテジーといった主要なデザインパターンを分析します。
このボリュームは、開発者、研究者、エンジニアにとって、マシンラーニングとソフトウェア設計の両方における技術的専門知識を強化するために不可欠なリソースである。
論文 参考訳(メタデータ) (2024-10-04T02:50:58Z) - AI Foundation Models in Remote Sensing: A Survey [6.036426846159163]
本稿では,リモートセンシング領域における基礎モデルの包括的調査を行う。
コンピュータビジョンおよびドメイン固有タスクにおけるそれらの応用に基づいて、これらのモデルを分類する。
これらの基盤モデルによって達成された、新しいトレンドと大きな進歩を強調します。
論文 参考訳(メタデータ) (2024-08-06T22:39:34Z) - A spectrum of physics-informed Gaussian processes for regression in
engineering [0.0]
センサとデータ全般の可用性は向上していますが、純粋なデータ駆動アプローチから多くのサービス内エンジニアリングシステムや構造を完全に特徴づけることはできません。
本稿では、限られたデータで予測モデルを作成する能力を高めるために、機械学習技術と物理に基づく推論の組み合わせを追求する。
論文 参考訳(メタデータ) (2023-09-19T14:39:03Z) - Code Generation for Machine Learning using Model-Driven Engineering and
SysML [0.0]
この研究は、機械学習タスクを形式化する以前の作業を拡張して、実践的なデータ駆動エンジニアリングの実装を促進することを目的としている。
本手法は,天気予報のためのケーススタディにおいて,実現可能性について評価した。
結果は、実装の労力を減らす方法の柔軟性と単純さを示します。
論文 参考訳(メタデータ) (2023-07-10T15:00:20Z) - Design Automation for Fast, Lightweight, and Effective Deep Learning
Models: A Survey [53.258091735278875]
本調査では,エッジコンピューティングを対象としたディープラーニングモデルの設計自動化技術について述べる。
これは、有効性、軽量性、計算コストの観点からモデルの習熟度を定量化するために一般的に使用される主要なメトリクスの概要と比較を提供する。
この調査は、ディープモデル設計自動化技術の最先端の3つのカテゴリをカバーしている。
論文 参考訳(メタデータ) (2022-08-22T12:12:43Z) - Assessing the Quality of Computational Notebooks for a Frictionless
Transition from Exploration to Production [1.332560004325655]
データサイエンティストは、機械学習プロジェクトの爆発的なフェーズから生産フェーズに移行する必要があります。
これら2つのフェーズのギャップを狭めるために、データサイエンティストが採用するツールとプラクティスは、統合されたソフトウェアエンジニアリングソリューションを統合することで改善される可能性がある。
本研究プロジェクトでは,計算ノートと協調する上でのベストプラクティスについて検討し,ガイドライン遵守を促進するための概念実証ツールを提案する。
論文 参考訳(メタデータ) (2022-05-24T10:13:38Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
機械学習の研究は転換点にある。
研究の関心は、高度にパラメータ化されたモデルのパフォーマンス向上から、非常に具体的なタスクへとシフトしている。
このホワイトペーパーは、機械学習研究におけるこの新興分野の紹介と議論を提供する。
論文 参考訳(メタデータ) (2020-12-21T15:07:19Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。