論文の概要: ShifCon: Enhancing Non-Dominant Language Capabilities with a Shift-based Contrastive Framework
- arxiv url: http://arxiv.org/abs/2410.19453v1
- Date: Fri, 25 Oct 2024 10:28:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:36:57.761197
- Title: ShifCon: Enhancing Non-Dominant Language Capabilities with a Shift-based Contrastive Framework
- Title(参考訳): ShifCon: シフトベースのコントラストフレームワークによる非支配的言語機能向上
- Authors: Hengyuan Zhang, Chenming Shang, Sizhe Wang, Dongdong Zhang, Feng Yao, Renliang Sun, Yiyao Yu, Yujiu Yang, Furu Wei,
- Abstract要約: ShifConはShiftベースのContrastiveフレームワークで、他の言語の内部の前進プロセスを支配的な言語に合わせる。
非支配的な言語の表現を支配的な言語サブスペースに移行し、モデルパラメータにエンコードされた比較的リッチな情報にアクセスできるようにする。
実験により、我々のShifConフレームワークは、非支配言語の性能を大幅に向上させることが示された。
- 参考スコア(独自算出の注目度): 78.07201802874529
- License:
- Abstract: Although fine-tuning Large Language Models (LLMs) with multilingual data can rapidly enhance the multilingual capabilities of LLMs, they still exhibit a performance gap between the dominant language (e.g., English) and non-dominant ones due to the imbalance of training data across languages. To further enhance the performance of non-dominant languages, we propose ShifCon, a Shift-based Contrastive framework that aligns the internal forward process of other languages toward that of the dominant one. Specifically, it shifts the representations of non-dominant languages into the dominant language subspace, allowing them to access relatively rich information encoded in the model parameters. The enriched representations are then shifted back into their original language subspace before generation. Moreover, we introduce a subspace distance metric to pinpoint the optimal layer area for shifting representations and employ multilingual contrastive learning to further enhance the alignment of representations within this area. Experiments demonstrate that our ShifCon framework significantly enhances the performance of non-dominant languages, particularly for low-resource ones. Further analysis offers extra insights to verify the effectiveness of ShifCon and propel future research
- Abstract(参考訳): 多言語データを用いた微調整大型言語モデル(LLM)は、LLMの多言語能力を急速に向上させることができるが、言語間のトレーニングデータの不均衡により、支配的な言語(例えば、英語)と非支配的な言語の間には、パフォーマンスのギャップがまだ残っている。
非支配言語の性能をさらに向上させるために、シフトベースのコントラストフレームワークであるShifConを提案する。
具体的には、非支配的な言語の表現を支配的な言語サブスペースにシフトさせ、モデルパラメータに符号化された比較的リッチな情報にアクセスできるようにする。
リッチな表現は、生成前に元の言語サブスペースに戻される。
さらに,この領域内の表現のアライメントをさらに高めるために,表現のシフトに最適な層領域をピンポイントし,多言語コントラスト学習を採用するために,部分空間距離メトリックを導入する。
実験により、SifConフレームワークは、特に低リソース言語において、非支配言語の性能を大幅に向上させることが示された。
さらなる分析によりShifConの有効性を検証し、今後の研究を推進できる
関連論文リスト
- Converging to a Lingua Franca: Evolution of Linguistic Regions and Semantics Alignment in Multilingual Large Language Models [11.423589362950812]
大規模言語モデル(LLM)は、特に多言語文脈において顕著な性能を示した。
近年の研究では、LLMは、ある言語で学んだスキルを他の言語に伝達することができることが示唆されているが、この能力の背後にある内部メカニズムはいまだ不明である。
本稿では,LLMの内部動作に関する知見を提供し,言語間能力の向上のための基盤を提供する。
論文 参考訳(メタデータ) (2024-10-15T15:49:15Z) - Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lensは、大規模言語モデル(LLM)の多言語機能を強化する新しいアプローチである
LLMの上位層から言語に依存しない、言語固有のサブ空間内の隠された表現を操作できる。
既存のポストトレーニング手法に比べて計算資源がはるかに少ないため、優れた結果が得られる。
論文 参考訳(メタデータ) (2024-10-06T08:51:30Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - Towards Truthful Multilingual Large Language Models: Benchmarking and Alignment Strategies [38.3269908062146]
多言語シナリオにおける真理性評価のためのベンチマークを構築する。
多数の言語にまたがるデータ割り当てを最適化するために,Fact-aware Multilingual Selective Synergy (FaMSS)を提案する。
論文 参考訳(メタデータ) (2024-06-20T15:59:07Z) - Lexicon-Level Contrastive Visual-Grounding Improves Language Modeling [47.7950860342515]
LexiContrastive Grounding (LCG)は、視覚的監督を利用してテキスト表現を改善する言語学習手法である。
LCGは学習効率において標準言語のみのモデルより優れている。
CLIP、GIT、Flamingo、Vokenizationなど、視覚と言語による学習手順を改善する。
論文 参考訳(メタデータ) (2024-03-21T16:52:01Z) - Improving In-context Learning of Multilingual Generative Language Models with Cross-lingual Alignment [42.624862172666624]
本稿では,一対の翻訳文を利用する単純な言語間アライメントフレームワークを提案する。
多言語コントラスト学習を通じて、異なる言語にまたがる内部文表現を整合させる。
実験結果から,事前学習トークンが0.1文未満であっても,アライメントフレームワークは生成言語モデルの言語間相互性を大幅に向上させることが明らかとなった。
論文 参考訳(メタデータ) (2023-11-14T11:24:08Z) - Romanization-based Large-scale Adaptation of Multilingual Language
Models [124.57923286144515]
大規模多言語事前学習言語モデル (mPLMs) は,NLPにおける多言語間移動のデファクトステートとなっている。
我々は、mPLMをローマン化および非ロマン化した14の低リソース言語コーパスに適用するためのデータとパラメータ効率の戦略を多数検討し、比較した。
以上の結果から, UROMAN をベースとしたトランスリテラルは,多くの言語で高い性能を達成できることがわかった。
論文 参考訳(メタデータ) (2023-04-18T09:58:34Z) - Cross-lingual Transferring of Pre-trained Contextualized Language Models [73.97131976850424]
本稿では,PRLMのための新しい言語間モデル転送フレームワークTreLMを提案する。
シンボルの順序と言語間のシーケンス長の差に対処するため,中間的なTRILayer構造を提案する。
提案手法は,スクラッチから学習した言語モデルに対して,性能と効率の両面で,限られたデータで著しく優れることを示す。
論文 参考訳(メタデータ) (2021-07-27T06:51:13Z) - VECO: Variable and Flexible Cross-lingual Pre-training for Language
Understanding and Generation [77.82373082024934]
我々はTransformerエンコーダにクロスアテンションモジュールを挿入し、言語間の相互依存を明確に構築する。
独自の言語でコンテキストにのみ条件付けされたマスク付き単語の予測の退化を効果的に回避することができる。
提案した言語間モデルでは,XTREMEベンチマークのさまざまな言語間理解タスクに対して,最先端の新たな結果が提供される。
論文 参考訳(メタデータ) (2020-10-30T03:41:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。