論文の概要: LOCAL: Learning with Orientation Matrix to Infer Causal Structure from Time Series Data
- arxiv url: http://arxiv.org/abs/2410.19464v1
- Date: Fri, 25 Oct 2024 10:48:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:38:16.370170
- Title: LOCAL: Learning with Orientation Matrix to Infer Causal Structure from Time Series Data
- Title(参考訳): LOCAL:時系列データから因果構造を推定する指向行列による学習
- Authors: Yue Cheng, Jiajun Zhang, Weiwei Xing, Xiaoyu Guo, Xiaohui Gao,
- Abstract要約: LOCALは動的因果構造を復元するための効率的で実装が容易で制約のない手法である。
ACMLは学習可能な優先度ベクトルとGumbel-Sigmoid関数を用いて因果マスクを生成する。
DGPLは因果学習を分解された行列生成物に変換し、高次元データの動的因果構造をキャプチャする。
- 参考スコア(独自算出の注目度): 13.390666123493409
- License:
- Abstract: Discovering the underlying Directed Acyclic Graph (DAG) from time series observational data is highly challenging due to the dynamic nature and complex nonlinear interactions between variables. Existing methods often struggle with inefficiency and the handling of high-dimensional data. To address these research gap, we propose LOCAL, a highly efficient, easy-to-implement, and constraint-free method for recovering dynamic causal structures. LOCAL is the first attempt to formulate a quasi-maximum likelihood-based score function for learning the dynamic DAG equivalent to the ground truth. On this basis, we propose two adaptive modules for enhancing the algebraic characterization of acyclicity with new capabilities: Asymptotic Causal Mask Learning (ACML) and Dynamic Graph Parameter Learning (DGPL). ACML generates causal masks using learnable priority vectors and the Gumbel-Sigmoid function, ensuring the creation of DAGs while optimizing computational efficiency. DGPL transforms causal learning into decomposed matrix products, capturing the dynamic causal structure of high-dimensional data and enhancing interpretability. Extensive experiments on synthetic and real-world datasets demonstrate that LOCAL significantly outperforms existing methods, and highlight LOCAL's potential as a robust and efficient method for dynamic causal discovery. Our code will be available soon.
- Abstract(参考訳): 時系列観測データからDAG(Directed Acyclic Graph)を探索することは、変数間の動的性質と複雑な非線形相互作用のために非常に困難である。
既存の手法は、高次元データの非効率性と処理にしばしば苦労する。
これらの研究ギャップに対処するために,動的因果構造を復元する,効率的で実装が容易で制約のない手法であるLOCALを提案する。
LOCALは、基底真理と同等の動的DAGを学習するための準最大確率に基づくスコア関数を定式化するための最初の試みである。
そこで本研究では,漸近因果マスク学習 (ACML) と動的グラフパラメータ学習 (DGPL) の2つの適応モジュールを提案する。
ACMLは学習可能な優先度ベクトルとGumbel-Sigmoid関数を用いて因果マスクを生成し、計算効率を最適化しながらDAGの生成を保証する。
DGPLは因果学習を分解された行列生成物に変換し、高次元データの動的因果構造を捕捉し、解釈可能性を高める。
合成および実世界のデータセットに関する大規模な実験により、LOCALは既存の手法よりも大幅に優れており、動的因果発見のための堅牢で効率的な方法としてのLOCALの可能性を強調している。
私たちのコードはまもなく利用可能になります。
関連論文リスト
- Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
因果モデルでは、観測データから変数間の因果関係を解き明かそうとしている。
本稿では,変数が線形に疎結合な関係を示す設定のための新しい因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-02T04:01:38Z) - Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes [57.62036621319563]
本稿では,Large Language Models (LLMs) の知識を低データ構造におけるデータ拡張に活用したCLLMを紹介する。
従来のジェネレータと比較して,低データ方式におけるCLLMの優れた性能を示す。
論文 参考訳(メタデータ) (2023-12-19T12:34:46Z) - Recovering Linear Causal Models with Latent Variables via Cholesky
Factorization of Covariance Matrix [21.698480201955213]
観測データの共分散行列のコレスキー分解に基づくDAG構造復元アルゴリズムを提案する。
合成および実世界のデータセットでは、アルゴリズムは従来の手法よりも大幅に高速で、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-01T17:27:49Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
ノードレベルのグラフ異常検出(GAD)は、医学、ソーシャルネットワーク、eコマースなどの分野におけるグラフ構造化データから異常ノードを特定する上で重要な役割を果たす。
本稿では,GADの効率を向上させるために,PREM (preprocessing and Matching) という簡単な手法を提案する。
我々のアプローチは、強力な異常検出機能を維持しながら、GADを合理化し、時間とメモリ消費を削減します。
論文 参考訳(メタデータ) (2023-10-18T02:59:57Z) - Fast Latent Factor Analysis via a Fuzzy PID-Incorporated Stochastic
Gradient Descent Algorithm [1.984879854062214]
勾配降下(SGD)に基づく潜在因子分析モデルは,HDI行列から貴重な情報を抽出するのに極めて有効である。
標準SGDアルゴリズムは、過去の更新情報を考慮せずに、現在のインスタンスエラーの勾配に依存する潜在因子を学習する。
本稿では, ファジィPIDを組み込んだSGDアルゴリズムを2つのアイデアで提案する: 1) 過去の更新情報をPIDの原則に従って効率的な方法で再設計し, 2) ハイパーラーニングを実装し, ファジィ規則に従う適応を得る。
論文 参考訳(メタデータ) (2023-03-07T14:51:09Z) - Directed Acyclic Graph Structure Learning from Dynamic Graphs [44.21230819336437]
特徴(変数)の有向非巡回グラフ(DAG)の構造を推定することは、潜在データ生成プロセスを明らかにする上で重要な役割を果たす。
このようなユビキタスな動的グラフデータに基づくノード特徴生成機構の学習問題について検討する。
論文 参考訳(メタデータ) (2022-11-30T14:22:01Z) - Efficient Neural Causal Discovery without Acyclicity Constraints [30.08586535981525]
本研究では,有向非巡回因果グラフの効率的な構造学習法であるENCOを提案する。
実験の結果,ENCOは数百ノードのグラフを効率よく回収できることがわかった。
論文 参考訳(メタデータ) (2021-07-22T07:01:41Z) - DAGs with No Curl: An Efficient DAG Structure Learning Approach [62.885572432958504]
近年のDAG構造学習は連続的な非巡回性制約を伴う制約付き連続最適化問題として定式化されている。
本稿では,DAG空間の重み付き隣接行列を直接モデル化し,学習するための新しい学習フレームワークを提案する。
本手法は, 線形および一般化された構造方程式モデルにおいて, ベースラインDAG構造学習法よりも精度が高いが, 効率がよいことを示す。
論文 参考訳(メタデータ) (2021-06-14T07:11:36Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN)は、そのパラメータにCanonical/Polyadic分解を課すテンソルベースの非線形学習モデルである。
まず、入力をマルチリニアアレイとして扱い、ベクトル化の必要性を回避し、すべてのデータ次元に沿って構造情報を十分に活用することができる。
Rank-R FNNの普遍的な近似と学習性の特性を確立し、実世界のハイパースペクトルデータセットのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2021-04-11T16:37:32Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。