Causal Order Discovery based on Monotonic SCMs
- URL: http://arxiv.org/abs/2410.19870v1
- Date: Thu, 24 Oct 2024 03:15:11 GMT
- Title: Causal Order Discovery based on Monotonic SCMs
- Authors: Ali Izadi, Martin Ester,
- Abstract summary: We introduce a novel sequential procedure that directly identifies the causal order by iteratively detecting the root variable.
This method eliminates the need for sparsity assumptions and the associated optimization challenges.
We demonstrate the effectiveness of our approach in sequentially finding the root variable, comparing it to methods that maximize Jacobian sparsity.
- Score: 5.47587439763942
- License:
- Abstract: In this paper, we consider the problem of causal order discovery within the framework of monotonic Structural Causal Models (SCMs), which have gained attention for their potential to enable causal inference and causal discovery from observational data. While existing approaches either assume prior knowledge about the causal order or use complex optimization techniques to impose sparsity in the Jacobian of Triangular Monotonic Increasing maps, our work introduces a novel sequential procedure that directly identifies the causal order by iteratively detecting the root variable. This method eliminates the need for sparsity assumptions and the associated optimization challenges, enabling the identification of a unique SCM without the need for multiple independence tests to break the Markov equivalence class. We demonstrate the effectiveness of our approach in sequentially finding the root variable, comparing it to methods that maximize Jacobian sparsity.
Related papers
- Discovery of Maximally Consistent Causal Orders with Large Language Models [0.8192907805418583]
Causal discovery is essential for understanding complex systems.
Traditional methods often rely on strong, untestable assumptions.
We propose a novel method to derive a class of acyclic tournaments.
arXiv Detail & Related papers (2024-12-18T16:37:51Z) - Differentiable Causal Discovery For Latent Hierarchical Causal Models [19.373348700715578]
We present new theoretical results on the identifiability of nonlinear latent hierarchical causal models.
We develop a novel differentiable causal discovery algorithm that efficiently estimates the structure of such models.
arXiv Detail & Related papers (2024-11-29T09:08:20Z) - Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
Causal models seek to unravel the cause-effect relationships among variables from observed data.
This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships.
arXiv Detail & Related papers (2024-10-02T04:01:38Z) - A General Causal Inference Framework for Cross-Sectional Observational Data [0.4972323953932129]
General Causal Inference (GCI) framework specifically designed for cross-sectional observational data.
This paper proposes a GCI framework specifically designed for cross-sectional observational data.
arXiv Detail & Related papers (2024-04-28T14:26:27Z) - A Fixed-Point Approach for Causal Generative Modeling [20.88890689294816]
We propose a novel formalism for describing Structural Causal Models (SCMs) as fixed-point problems on causally ordered variables.
We establish the weakest known conditions for their unique recovery given the topological ordering (TO)
arXiv Detail & Related papers (2024-04-10T12:29:05Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
We find that transitivity acts as a key role in impeding the identifiability of latent causal representations.
Under some mild assumptions, we can show that the latent causal representations can be identified up to trivial permutation and scaling.
We propose a novel method, termed Structural caUsAl Variational autoEncoder, which directly learns latent causal representations and causal relationships among them.
arXiv Detail & Related papers (2022-08-30T11:12:59Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
We introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs.
In experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
arXiv Detail & Related papers (2021-06-14T17:52:49Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z) - CASTLE: Regularization via Auxiliary Causal Graph Discovery [89.74800176981842]
We introduce Causal Structure Learning (CASTLE) regularization and propose to regularize a neural network by jointly learning the causal relationships between variables.
CASTLE efficiently reconstructs only the features in the causal DAG that have a causal neighbor, whereas reconstruction-based regularizers suboptimally reconstruct all input features.
arXiv Detail & Related papers (2020-09-28T09:49:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.