論文の概要: AI-Driven Cyber Threat Intelligence Automation
- arxiv url: http://arxiv.org/abs/2410.20287v1
- Date: Sat, 26 Oct 2024 22:56:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:19:49.290689
- Title: AI-Driven Cyber Threat Intelligence Automation
- Title(参考訳): AI駆動のサイバー脅威インテリジェンス自動化
- Authors: Shrit Shah, Fatemeh Khoda Parast,
- Abstract要約: 本研究では,産業環境におけるサイバー脅威インテリジェンス(CTI)プロセスの自動化に向けた革新的なアプローチを紹介する。
GPT-4oと高度なワンショット微調整技術を大規模言語モデルに適用することにより、新しいCTI自動化ソリューションを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study introduces an innovative approach to automating Cyber Threat Intelligence (CTI) processes in industrial environments by leveraging Microsoft's AI-powered security technologies. Historically, CTI has heavily relied on manual methods for collecting, analyzing, and interpreting data from various sources such as threat feeds. This study introduces an innovative approach to automating CTI processes in industrial environments by leveraging Microsoft's AI-powered security technologies. Historically, CTI has heavily relied on manual methods for collecting, analyzing, and interpreting data from various sources such as threat feeds, security logs, and dark web forums -- a process prone to inefficiencies, especially when rapid information dissemination is critical. By employing the capabilities of GPT-4o and advanced one-shot fine-tuning techniques for large language models, our research delivers a novel CTI automation solution. The outcome of the proposed architecture is a reduction in manual effort while maintaining precision in generating final CTI reports. This research highlights the transformative potential of AI-driven technologies to enhance both the speed and accuracy of CTI and reduce expert demands, offering a vital advantage in today's dynamic threat landscape.
- Abstract(参考訳): 本研究では,MicrosoftのAIを活用したセキュリティ技術を活用することにより,産業環境におけるサイバー脅威インテリジェンス(CTI)プロセスを自動化するための革新的なアプローチを紹介する。
歴史的に、CTIは脅威フィードなどの様々なソースからのデータを収集、分析、解釈するための手動手法に大きく依存してきた。
本研究は,MicrosoftのAIを活用したセキュリティ技術を活用することにより,産業環境におけるCTIプロセスを自動化する革新的なアプローチを提案する。
歴史的に、CTIは脅威フィード、セキュリティログ、ダークウェブフォーラムなどの様々なソースからのデータを収集、分析、解釈する手作業の方法に大きく依存してきた。
GPT-4oと高度なワンショット微調整技術を大規模言語モデルに適用することにより、新しいCTI自動化ソリューションを提供する。
提案したアーキテクチャの結果は、最終CTIレポートの生成の精度を維持しながら、手作業の削減である。
この研究は、CTIのスピードと精度を向上し、専門家の要求を減らし、今日の動的脅威の状況において重要なアドバンテージを提供する、AI駆動技術の変革の可能性を強調している。
関連論文リスト
- CTINEXUS: Leveraging Optimized LLM In-Context Learning for Constructing Cybersecurity Knowledge Graphs Under Data Scarcity [49.657358248788945]
サイバー脅威インテリジェンス(CTI)レポートのテキスト記述は、サイバー脅威に関する豊富な知識源である。
現在のCTI抽出法は柔軟性と一般化性に欠けており、しばしば不正確で不完全な知識抽出をもたらす。
CTINexusは,大規模言語モデルのテキスト内学習(ICL)を最適化した新しいフレームワークである。
論文 参考訳(メタデータ) (2024-10-28T14:18:32Z) - Actionable Cyber Threat Intelligence using Knowledge Graphs and Large Language Models [0.8192907805418583]
Microsoft、Trend Micro、CrowdStrikeはCTI抽出を容易にするために生成AIを使用している。
本稿では,Large Language Models(LLMs)とKGs(KGs)の進歩を利用して,実行可能なCTIの抽出を自動化するという課題に対処する。
本手法は,情報抽出と構造化を最適化するために,プロンプトエンジニアリング,ガイダンスフレームワーク,微調整などの手法を評価する。
実験により,本手法が関連する情報抽出に有効であることを示すとともに,指導と微調整により,迅速な工学よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-06-30T13:02:03Z) - DETECTA 2.0: Research into non-intrusive methodologies supported by Industry 4.0 enabling technologies for predictive and cyber-secure maintenance in SMEs [0.19972837513980318]
DETECTA 2.0プロジェクトは、リアルタイム異常検出、高度な分析、予測予測機能を調和させる。
中心となるのはDigital Twinインターフェースで、マシン状態と検出された異常の直感的なリアルタイム可視化を提供する。
予測エンジンは、N-HiTSのような高度な時系列アルゴリズムを使用して、将来のマシン利用トレンドを予測する。
論文 参考訳(メタデータ) (2024-05-24T08:38:38Z) - Towards an AI-Enhanced Cyber Threat Intelligence Processing Pipeline [0.0]
本稿では,人工知能(AI)をサイバー脅威知能(CTI)に統合する可能性について検討する。
我々は、AIに強化されたCTI処理パイプラインの青写真を提供し、そのコンポーネントと機能について詳述する。
倫理的ジレンマ、潜在的なバイアス、そしてAIによる意思決定における透明性の必須事項について論じる。
論文 参考訳(メタデータ) (2024-03-05T19:03:56Z) - NLP-Based Techniques for Cyber Threat Intelligence [13.958337678497163]
脅威知能の文脈で適用されたNLP技術の概要について概説する。
デジタル資産を保護するための主要なツールとして、CTIの基本的定義と原則を説明することから始まる。
その後、WebソースからのCTIデータクローリングのためのNLPベースのテクニック、CTIデータ分析、サイバーセキュリティデータからの関係抽出、CTIの共有とコラボレーション、CTIのセキュリティ脅威の徹底的な調査を行う。
論文 参考訳(メタデータ) (2023-11-15T09:23:33Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKGはOSCTIの収集と管理のための自動化システムである。
複数のソースから多数のOSCTIレポートを効率的に収集する。
さまざまな脅威エンティティに関する高品質な知識を抽出するために、AIベースの専門技術を使用する。
論文 参考訳(メタデータ) (2022-12-20T16:13:59Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z) - A System for Automated Open-Source Threat Intelligence Gathering and
Management [53.65687495231605]
SecurityKGはOSCTIの収集と管理を自動化するシステムである。
AIとNLP技術を組み合わせて、脅威行動に関する高忠実な知識を抽出する。
論文 参考訳(メタデータ) (2021-01-19T18:31:35Z) - Automated Retrieval of ATT&CK Tactics and Techniques for Cyber Threat
Reports [5.789368942487406]
我々は,非構造化テキストから戦術,技法,手順を自動的に抽出するいくつかの分類手法を評価する。
我々は、私たちの発見に基づいて構築されたツールrcATTを紹介し、サイバー脅威レポートの自動分析をサポートするために、セキュリティコミュニティに自由に配布する。
論文 参考訳(メタデータ) (2020-04-29T16:45:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。