A Comparative Study of Multiple Deep Learning Algorithms for Efficient Localization of Bone Joints in the Upper Limbs of Human Body
- URL: http://arxiv.org/abs/2410.20639v1
- Date: Mon, 28 Oct 2024 00:05:38 GMT
- Title: A Comparative Study of Multiple Deep Learning Algorithms for Efficient Localization of Bone Joints in the Upper Limbs of Human Body
- Authors: Soumalya Bose, Soham Basu, Indranil Bera, Sambit Mallick, Snigdha Paul, Saumodip Das, Swarnendu Sil, Swarnava Ghosh, Anindya Sen,
- Abstract summary: This paper addresses the medical imaging problem of joint detection in the upper limbs, viz. elbow, shoulder, wrist and finger joints.
The research analyses the performance of different Deep Learning models, mathematically, graphically and visually.
It has been found YOLOv7 performed the best for accurately predicting the bounding boxes while YOLOv3 performed the worst in the Visual Analysis test.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper addresses the medical imaging problem of joint detection in the upper limbs, viz. elbow, shoulder, wrist and finger joints. Localization of joints from X-Ray and Computerized Tomography (CT) scans is an essential step for the assessment of various bone-related medical conditions like Osteoarthritis, Rheumatoid Arthritis, and can even be used for automated bone fracture detection. Automated joint localization also detects the corresponding bones and can serve as input to deep learning-based models used for the computerized diagnosis of the aforementioned medical disorders. This in-creases the accuracy of prediction and aids the radiologists with analyzing the scans, which is quite a complex and exhausting task. This paper provides a detailed comparative study between diverse Deep Learning (DL) models - YOLOv3, YOLOv7, EfficientDet and CenterNet in multiple bone joint detections in the upper limbs of the human body. The research analyses the performance of different DL models, mathematically, graphically and visually. These models are trained and tested on a portion of the openly available MURA (musculoskeletal radiographs) dataset. The study found that the best Mean Average Precision (mAP at 0.5:0.95) values of YOLOv3, YOLOv7, EfficientDet and CenterNet are 35.3, 48.3, 46.5 and 45.9 respectively. Besides, it has been found YOLOv7 performed the best for accurately predicting the bounding boxes while YOLOv3 performed the worst in the Visual Analysis test. Code available at https://github.com/Sohambasu07/BoneJointsLocalization
Related papers
- Segmentation of temporomandibular joint structures on mri images using neural networks for diagnosis of pathologies [0.0]
This article explores the use of artificial intelligence for the diagnosis of pathologies of the temporomandibular joint (TMJ)<n>The relevance of the work is due to the high prevalence of TMJ pathologies, as well as the need to improve the accuracy and speed of diagnosis in medical institutions.
arXiv Detail & Related papers (2025-05-19T10:58:02Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Pediatric Wrist Fracture Detection in X-rays via YOLOv10 Algorithm and Dual Label Assignment System [2.4554686192257424]
This study is the first to evaluate various YOLOv10 variants to assess their performance in detecting pediatric wrist fractures.
It investigates how changes in model complexity, scaling the architecture, and implementing a dual-label assignment strategy can enhance detection performance.
arXiv Detail & Related papers (2024-07-22T14:54:51Z) - Global Context Modeling in YOLOv8 for Pediatric Wrist Fracture Detection [0.0]
Children often suffer wrist injuries in daily life, while fracture injuring radiologists need to analyze and interpret X-ray images before surgical treatment.
The development of deep learning has enabled neural network models to work as computer-assisted diagnosis (CAD) tools.
This paper proposes the YOLOv8 model for fracture detection, which is an improved version of the YOLOv8 model with the GC block.
arXiv Detail & Related papers (2024-07-03T14:36:07Z) - Bone mineral density estimation from a plain X-ray image by learning
decomposition into projections of bone-segmented computed tomography [4.872603360039571]
Osteoporosis is a prevalent bone disease that causes fractures in fragile bones, leading to a decline in daily living activities.
To frequently monitor bone health, low-cost, low-dose, and ubiquitously available diagnostic methods are highly anticipated.
In this study, we aim to perform bone mineral density estimation from a plain X-ray image for opportunistic screening.
arXiv Detail & Related papers (2023-07-21T11:49:30Z) - CNN-based fully automatic wrist cartilage volume quantification in MR
Image [55.41644538483948]
The U-net convolutional neural network with additional attention layers provides the best wrist cartilage segmentation performance.
The error of cartilage volume measurement should be assessed independently using a non-MRI method.
arXiv Detail & Related papers (2022-06-22T14:19:06Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
We introduce the challenging new task of explainable multiple abnormality classification in volumetric medical images.
We propose a multiple instance learning convolutional neural network, AxialNet, that allows identification of top slices for each abnormality.
We then aim to improve the model's learning through a novel mask loss that leverages HiResCAM and 3D allowed regions.
arXiv Detail & Related papers (2021-11-24T01:14:33Z) - Knee Osteoarthritis Severity Prediction using an Attentive Multi-Scale
Deep Convolutional Neural Network [8.950918531231158]
This paper presents a deep learning-based framework, namely OsteoHRNet, that automatically assesses the Knee Osteoarthritis severity in terms of Kellgren and Lawrence grade classification from X-rays.
Our proposed model has achieved the best multiclass accuracy of 71.74% and MAE of 0.311 on the baseline cohort of the OAI dataset.
arXiv Detail & Related papers (2021-06-27T17:29:46Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - A Deep Learning-Based Approach to Extracting Periosteal and Endosteal
Contours of Proximal Femur in Quantitative CT Images [25.76523855274612]
A three-dimensional (3D) end-to-end fully convolutional neural network was developed for our segmentation task.
Two models with the same network structures were trained and they achieved a dice similarity coefficient (DSC) of 97.87% and 96.49% for the periosteal and endosteal contours, respectively.
It demonstrated a strong potential for clinical use, including the hip fracture risk prediction and finite element analysis.
arXiv Detail & Related papers (2021-02-03T10:23:41Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.