論文の概要: A Statistical Analysis of Deep Federated Learning for Intrinsically Low-dimensional Data
- arxiv url: http://arxiv.org/abs/2410.20659v2
- Date: Tue, 16 Sep 2025 00:10:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-17 15:46:32.48049
- Title: A Statistical Analysis of Deep Federated Learning for Intrinsically Low-dimensional Data
- Title(参考訳): 内在的低次元データに対するディープフェデレーション学習の統計的解析
- Authors: Saptarshi Chakraborty, Peter L. Bartlett,
- Abstract要約: 本稿では,2段階サンプリングモデルにおけるディープフェデレート回帰の一般化特性について検討する。
その結果,エントロピー次元を特徴とする固有次元は,深層学習者の収束率を決定する上で重要な役割を担っていることが明らかとなった。
- 参考スコア(独自算出の注目度): 31.52603443208588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite significant research on the optimization aspects of federated learning, the exploration of generalization error, especially in the realm of heterogeneous federated learning, remains an area that has been insufficiently investigated, primarily limited to developments in the parametric regime. This paper delves into the generalization properties of deep federated regression within a two-stage sampling model. Our findings reveal that the intrinsic dimension, characterized by the entropic dimension, plays a pivotal role in determining the convergence rates for deep learners when appropriately chosen network sizes are employed. Specifically, when the true relationship between the response and explanatory variables is described by a $\beta$-H\"older function and one has access to $n$ independent and identically distributed (i.i.d.) samples from $m$ participating clients, for participating clients, the error rate scales at most as $\Tilde{O}((mn)^{-2\beta/(2\beta + \bar{d}_{2\beta}(\lambda))})$, whereas for non-participating clients, it scales as $\Tilde{O}(\Delta \cdot m^{-2\beta/(2\beta + \bar{d}_{2\beta}(\lambda))} + (mn)^{-2\beta/(2\beta + \bar{d}_{2\beta}(\lambda))})$. Here $\bar{d}_{2\beta}(\lambda)$ denotes the corresponding $2\beta$-entropic dimension of $\lambda$, the marginal distribution of the explanatory variables. The dependence between the two stages of the sampling scheme is characterized by $\Delta$. Consequently, our findings not only explicitly incorporate the ``heterogeneity" of the clients, but also highlight that the convergence rates of errors of deep federated learners are not contingent on the nominal high dimensionality of the data but rather on its intrinsic dimension.
- Abstract(参考訳): フェデレーテッドラーニングの最適化に関する重要な研究にもかかわらず、特に異種フェデレーテッドラーニングの領域における一般化誤差の探索は、主にパラメトリック・レシエーションにおける発展に限られる、不十分な研究領域として残されている。
本稿では,2段階サンプリングモデルにおけるディープフェデレート回帰の一般化特性について検討する。
その結果, ネットワークサイズが適切に選択された場合, 深層学習者の収束率を決定する上で, エントロピー次元を特徴とする固有次元が重要な役割を担っていることが明らかとなった。
具体的には、応答と説明変数の真の関係を$\beta$-H\"older関数で記述し、$m$参加クライアントから$n$独立で同一に分散した(つまり、d)サンプルにアクセスすると、エラーレートは最大で$\Tilde{O}((mn)^{-2\beta/(2\beta + \bar{d}_{2\beta}(\lambda))}$としてスケールするが、非参加クライアントでは$\Tilde{O}(\Delta \cdot m^{-2\beta/(2\beta + \bar{d}_{2\beta}(\lambda))} + (n)^{-2\beta +(2\beta +\beta{2\lambda)$としてスケールする。
ここで、$\bar{d}_{2\beta}(\lambda)$は、説明変数の辺分布である$\lambda$-エントロピー次元の$2\betaを表す。
サンプリングスキームの2つのステージ間の依存性は$\Delta$によって特徴づけられる。
その結果, クライアントの「ヘテロジニティ」を明示的に取り入れるだけでなく, 深層学習者の誤りの収束率は, データの名目上の高次元性ではなく, その本質的な次元に起因していることがわかった。
関連論文リスト
- Spurious Correlations in High Dimensional Regression: The Roles of Regularization, Simplicity Bias and Over-Parameterization [19.261178173399784]
学習モデルは、トレーニングデータ内の非予測的特徴と関連するラベルとの間に急激な相関関係があることが示されている。
我々は、データ共分散とリッジ正規化の強さの点から、線形回帰によって学習されたスプリアス相関の量$C$を定量化する。
論文 参考訳(メタデータ) (2025-02-03T13:38:42Z) - A Statistical Analysis for Supervised Deep Learning with Exponential Families for Intrinsically Low-dimensional Data [32.98264375121064]
本研究では,指数関数系に従って説明変数が分散された場合の教師付き深層学習について考察する。
説明変数の上界密度を仮定すると、収束速度は $tildemathcalOleft(dfrac2lfloorbetarfloor(beta + d)2beta + dn-frac22beta + dn-frac22beta + dn-frac22beta + dn-frac22beta と特徴づけられる。
論文 参考訳(メタデータ) (2024-12-13T01:15:17Z) - Convergence of Unadjusted Langevin in High Dimensions: Delocalization of Bias [13.642712817536072]
問題の次元が$d$になるにつれて、所望の誤差内で収束を保証するのに必要なイテレーションの数が増加することを示す。
私たちが取り組んだ重要な技術的課題は、収束を測定するための$W_2,ellinfty$メートル法に一段階の縮約性がないことである。
論文 参考訳(メタデータ) (2024-08-20T01:24:54Z) - Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
本稿では,円滑なベルマン作用素を持つ連続空間マルコフ決定過程(MDP)の一般クラスにおいて,$varepsilon$-optimal Policyを学習する問題を考察する。
我々のソリューションの鍵となるのは、調和解析のアイデアに基づく新しい射影技術である。
我々の結果は、連続空間 MDP における2つの人気と矛盾する視点のギャップを埋めるものである。
論文 参考訳(メタデータ) (2024-05-10T09:58:47Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
近年の研究では、再生カーネルヒルベルト空間(RKHS)がニューラルネットワークによる関数のモデル化に適した空間ではないことが示されている。
本稿では,有界ノルムを持つオーバーパラメータ化された2層ニューラルネットワークに適した関数空間について検討する。
論文 参考訳(メタデータ) (2024-04-29T15:04:07Z) - Convergence Analysis of Probability Flow ODE for Score-based Generative Models [5.939858158928473]
確率フローODEに基づく決定論的サンプリング器の収束特性を理論的・数値的両面から検討する。
連続時間レベルでは、ターゲットと生成されたデータ分布の総変動を$mathcalO(d3/4delta1/2)$で表すことができる。
論文 参考訳(メタデータ) (2024-04-15T12:29:28Z) - Computational-Statistical Gaps in Gaussian Single-Index Models [77.1473134227844]
単次元モデル(Single-Index Models)は、植木構造における高次元回帰問題である。
我々は,統計的クエリ (SQ) と低遅延多項式 (LDP) フレームワークの両方において,計算効率のよいアルゴリズムが必ずしも$Omega(dkstar/2)$サンプルを必要とすることを示した。
論文 参考訳(メタデータ) (2024-03-08T18:50:19Z) - Analysis of the expected $L_2$ error of an over-parametrized deep neural
network estimate learned by gradient descent without regularization [7.977229957867868]
近年の研究では、正規化された経験的リスクに勾配降下を適用して学習した過度パラメータ化されたディープニューラルネットワークによって定義される推定値が、普遍的に一貫していることが示されている。
本稿では、同様の結果を得るために正規化項は必要ないことを示す。
論文 参考訳(メタデータ) (2023-11-24T17:04:21Z) - On the Convergence of Federated Averaging under Partial Participation for Over-parameterized Neural Networks [13.2844023993979]
フェデレートラーニング(FL)は、ローカルデータを共有せずに複数のクライアントから機械学習モデルを協調的に作成するための分散パラダイムである。
本稿では,FedAvgが世界規模で世界規模で収束していることを示す。
論文 参考訳(メタデータ) (2023-10-09T07:56:56Z) - FeDXL: Provable Federated Learning for Deep X-Risk Optimization [105.17383135458897]
我々は、既存のアルゴリズムが適用できないXリスクのファミリーを最適化するために、新しい連邦学習(FL)問題に取り組む。
Xリスクに対するFLアルゴリズムを設計する際の課題は、複数のマシンに対する目的の非可逆性と、異なるマシン間の相互依存にある。
論文 参考訳(メタデータ) (2022-10-26T00:23:36Z) - An Improved Analysis of Gradient Tracking for Decentralized Machine
Learning [34.144764431505486]
トレーニングデータが$n$エージェントに分散されるネットワーク上での分散機械学習を検討する。
エージェントの共通の目標は、すべての局所損失関数の平均を最小化するモデルを見つけることである。
ノイズのない場合、$p$を$mathcalO(p-1)$から$mathcalO(p-1)$に改善します。
論文 参考訳(メタデータ) (2022-02-08T12:58:14Z) - Reward-Free Model-Based Reinforcement Learning with Linear Function
Approximation [92.99933928528797]
エピソードマルコフ決定過程(MDP)に対する線形関数近似を用いたモデルに基づく無報酬強化学習について検討する。
計画段階では、特定の報酬関数が与えられ、探索フェーズから収集したサンプルを使用して良い政策を学ぶ。
任意の報酬関数に対して$epsilon$-optimal Policyを得るには,最大$tilde O(H4d(H + d)epsilon-2)$ episodesをサンプリングする必要がある。
論文 参考訳(メタデータ) (2021-10-12T23:03:58Z) - Locality defeats the curse of dimensionality in convolutional
teacher-student scenarios [69.2027612631023]
学習曲線指数$beta$を決定する上で,局所性が重要であることを示す。
我々は、自然の仮定を用いて、トレーニングセットのサイズに応じて減少するリッジでカーネルレグレッションを実行すると、リッジレスの場合と同じような学習曲線指数が得られることを証明して結論付けた。
論文 参考訳(メタデータ) (2021-06-16T08:27:31Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
現代の機械学習モデルは、しばしば膨大な数のパラメータを使用し、通常、トレーニング損失がゼロになるように最適化されている。
ニューラルネットワークの2層構成において、これらの良質な過適合現象がどのように起こるかを検討する。
本稿では,2層型ReLUネットワーク補間器を極小最適学習率で実現可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T19:08:53Z) - Fundamental tradeoffs between memorization and robustness in random
features and neural tangent regimes [15.76663241036412]
モデルがトレーニングのごく一部を記憶している場合、そのソボレフ・セミノルムは低い有界であることを示す。
実験によって初めて、(iv)ミンノルム補間器の堅牢性における多重発色現象が明らかになった。
論文 参考訳(メタデータ) (2021-06-04T17:52:50Z) - Online nonparametric regression with Sobolev kernels [99.12817345416846]
我々は、ソボレフ空間のクラス上の後悔の上限を$W_pbeta(mathcalX)$, $pgeq 2, beta>fracdp$ とする。
上界は minimax regret analysis で支えられ、$beta> fracd2$ または $p=infty$ の場合、これらの値は(本質的に)最適である。
論文 参考訳(メタデータ) (2021-02-06T15:05:14Z) - A scaling hypothesis for projected entangled-pair states [0.0]
本稿では,強い相関関係を持つシステムに対して,射影絡み合ったペア状態(PEPS)でシミュレーションをスケールするための新しいパラダイムを提案する。
データポイントの崩壊を誘導するために有効相関長$chi$,$f(D,chi)=f(xi(D,chi))$,$D$の任意の値と環境結合次元$chi$を使用する。
本研究では, 臨界3次元二量体モデル, 3次元古典イジングモデル, 2次元量子ハイゼンベルクモデルに関する仮説を検証した。
論文 参考訳(メタデータ) (2021-02-05T12:48:01Z) - A Random Matrix Analysis of Random Fourier Features: Beyond the Gaussian
Kernel, a Precise Phase Transition, and the Corresponding Double Descent [85.77233010209368]
本稿では、データサンプルの数が$n$である現実的な環境で、ランダムフーリエ(RFF)回帰の正確さを特徴付けます。
この分析はまた、大きな$n,p,N$のトレーニングとテスト回帰エラーの正確な推定も提供する。
論文 参考訳(メタデータ) (2020-06-09T02:05:40Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
非同期Q-ラーニングはマルコフ決定過程(MDP)の最適行動値関数(またはQ-関数)を学習することを目的としている。
Q-関数の入出力$varepsilon$-正確な推定に必要なサンプルの数は、少なくとも$frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$の順である。
論文 参考訳(メタデータ) (2020-06-04T17:51:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。