論文の概要: Plan*RAG: Efficient Test-Time Planning for Retrieval Augmented Generation
- arxiv url: http://arxiv.org/abs/2410.20753v2
- Date: Tue, 04 Feb 2025 15:30:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:55:38.352240
- Title: Plan*RAG: Efficient Test-Time Planning for Retrieval Augmented Generation
- Title(参考訳): Plan*RAG:Retrieval Augmented Generationのための効率的なテストタイムプランニング
- Authors: Prakhar Verma, Sukruta Prakash Midigeshi, Gaurav Sinha, Arno Solin, Nagarajan Natarajan, Amit Sharma,
- Abstract要約: Plan*RAGは、検索強化世代(RAG)における構造化マルチホップ推論を可能にするフレームワーク
Plan*RAGは、RQ-RAGやSelf-RAGといった最近提案された手法よりも一貫して改善されている。
- 参考スコア(独自算出の注目度): 20.5047654554575
- License:
- Abstract: We introduce Plan*RAG, a novel framework that enables structured multi-hop reasoning in retrieval-augmented generation (RAG) through test-time reasoning plan generation. While existing approaches such as ReAct maintain reasoning chains within the language model's context window, we observe that this often leads to plan fragmentation and execution failures. Our key insight is that by isolating the reasoning plan as a directed acyclic graph (DAG) outside the LM's working memory, we can enable (1) systematic exploration of reasoning paths, (2) atomic subqueries enabling precise retrievals and grounding, and (3) efficiency through parallel execution and bounded context window utilization. Moreover, Plan*RAG's modular design allows it to be integrated with existing RAG methods, thus providing a practical solution to improve current RAG systems. On standard multi-hop reasoning benchmarks, Plan*RAG consistently achieves improvements over recently proposed methods such as RQ-RAG and Self-RAG, while maintaining comparable computational costs.
- Abstract(参考訳): そこで我々はPlan*RAGを紹介した。Plan*RAGは、検索強化世代(RAG)において、テスト時推論計画生成を通じて構造化されたマルチホップ推論を可能にする新しいフレームワークである。
ReActのような既存のアプローチでは、言語モデルのコンテキストウィンドウ内で推論チェーンを維持していますが、これはしばしば計画の断片化や実行の失敗につながります。
我々のキーとなる洞察は、LMのワーキングメモリの外側にある有向非巡回グラフ(DAG)として推論計画を分離することにより、(1)推論経路の体系的な探索、(2)正確な検索とグラウンド化を可能にする原子サブクエリ、(3)並列実行とコンテキストウィンドウのバウンド利用による効率を実現できるということである。
さらに、Plan*RAGのモジュラー設計により、既存のRAGメソッドと統合することができ、現在のRAGシステムを改善するための実用的なソリューションを提供する。
標準的なマルチホップ推論ベンチマークでは、Plan*RAGはRQ-RAGやSelf-RAGといった最近提案された手法よりも一貫して改善され、計算コストは同等である。
関連論文リスト
- Learning to Plan & Reason for Evaluation with Thinking-LLM-as-a-Judge [78.28188747489769]
そこで我々は,Thinking-LLM-as-a-Judgeの優先最適化アルゴリズムであるEvalPlannerを提案する。
自己学習ループでは、EvalPlannerは、合成的に構築された評価計画と実行よりも反復的に最適化する。
提案手法はRewardBenchにおける生成報酬モデルのための新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2025-01-30T02:21:59Z) - Unveiling the Potential of Multimodal Retrieval Augmented Generation with Planning [5.205803766626321]
MRAG (Multimodal Retrieval Augmented Generation) システムは、しばしば厳密な単一ステップの検索手法に依存している。
人間の認知プロセスにインスパイアされた汎用的なフレームワークであるCagPlannerを紹介します。
CogPlannerはクエリを反復的に洗練し、検索戦略を選択し、並列およびシーケンシャルなモデリングアプローチを可能にする。
論文 参考訳(メタデータ) (2025-01-26T10:16:42Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
本稿では,o1-like RAGモデルを学習し,最終回答を生成する前に段階的に関連情報を抽出・推論する手法を提案する。
提案手法であるCoRAGは,進化状態に基づいて動的にクエリを再構成する。
論文 参考訳(メタデータ) (2025-01-24T09:12:52Z) - AirRAG: Activating Intrinsic Reasoning for Retrieval Augmented Generation using Tree-based Search [4.4907551923591695]
本稿では,システム解析と効率的な推論行動を統合したRAGにおける新しい思考パターンを提案する。
具体的には,本手法は5つの基本的な推論動作を設計し,より広い木に基づく推論空間に拡張する。
実験により,複雑な質問応答データセットに対して,AirRAGの有効性を示す。
論文 参考訳(メタデータ) (2025-01-17T09:16:13Z) - Can We Further Elicit Reasoning in LLMs? Critic-Guided Planning with Retrieval-Augmentation for Solving Challenging Tasks [68.49251303172674]
最先端の大規模言語モデル(LLM)は、目覚ましい問題解決能力を示すが、複雑な推論と事実の正しさに苦慮する可能性がある。
既存の手法では、チェーン・オブ・ソートと検索強化生成(RAG)の強みを利用して、複雑な問題をより単純なステップに分解し、検索を適用して事実の正しさを向上させる。
CR-Planner(CR-Planner, CR-Planner, CR-Planner)は, 微調整された批判モデルを利用して, 推論と検索の両方のプロセスを計画を通してガイドする新しいフレームワークである。
論文 参考訳(メタデータ) (2024-10-02T11:26:02Z) - Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
CodePlanは、テキストコード形式の計画を生成し、追跡するフレームワークで、高いレベルの構造化された推論プロセスの概要を擬似コードで示します。
CodePlanは、洗練された推論タスク固有のリッチなセマンティクスと制御フローを効果的にキャプチャする。
反応を直接生成するのに比べて25.1%の相対的な改善が達成されている。
論文 参考訳(メタデータ) (2024-09-19T04:13:58Z) - Parallel Strategies for Best-First Generalized Planning [51.713634067802104]
汎用計画(GP)は、複数の古典的な計画インスタンスを解くことができるアルゴリズムのようなソリューションの自動合成を研究するAIの研究分野である。
現在の進歩の1つはBest-First Generalized Planning (BFGP) の導入である。
本稿では,並列探索手法をBFGPに適用し,性能ギャップを埋める上で重要な要素であることを示す。
論文 参考訳(メタデータ) (2024-07-31T09:50:22Z) - Edge Generation Scheduling for DAG Tasks Using Deep Reinforcement
Learning [2.365237699556817]
直接非巡回グラフ(DAG)タスクは現在、複雑なアプリケーションをモデル化するためにリアルタイムドメインで採用されている。
エッジを反復的に生成することでDAG幅を最小化する新しいDAGスケジューリングフレームワークを提案する。
我々は,提案アルゴリズムの有効性を,最先端DAGスケジューリングと最適混合整数線形プログラミングベースラインとの比較により評価した。
論文 参考訳(メタデータ) (2023-08-28T15:19:18Z) - House-GAN++: Generative Adversarial Layout Refinement Networks [37.60108582423617]
我々のアーキテクチャはグラフ制約付きGANと条件付きGANの統合であり、そこでは以前に生成されたレイアウトが次の入力制約となる。
我々の研究の驚くべき発見は、コンポーネントワイドGTコンディショニングと呼ばれる単純な非イテレーティブトレーニングプロセスが、そのようなジェネレータの学習に有効であることである。
論文 参考訳(メタデータ) (2021-03-03T18:15:52Z) - Divide-and-Conquer Monte Carlo Tree Search For Goal-Directed Planning [78.65083326918351]
暗黙的な逐次計画の仮定に代わるものを検討する。
本稿では,最適計画の近似を行うため,Divide-and-Conquer Monte Carlo Tree Search (DC-MCTS)を提案する。
計画順序に対するこのアルゴリズム的柔軟性は,グリッドワールドにおけるナビゲーションタスクの改善に繋がることを示す。
論文 参考訳(メタデータ) (2020-04-23T18:08:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。