論文の概要: Node Regression on Latent Position Random Graphs via Local Averaging
- arxiv url: http://arxiv.org/abs/2410.21987v1
- Date: Tue, 29 Oct 2024 12:17:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:42:26.492198
- Title: Node Regression on Latent Position Random Graphs via Local Averaging
- Title(参考訳): 局所平均化による潜在位置ランダムグラフのノード回帰
- Authors: Martin Gjorgjevski, Nicolas Keriven, Simon Barthelmé, Yohann De Castro,
- Abstract要約: ノード回帰に対する各種推定器の性能について検討する。
もう一つの選択肢は、まず潜伏位置の間の真の距離を推定し、次にこれらの推定距離を古典的なナダラヤ・ワトソン推定器に注入することである。
本手法は,グラフ近傍が大きすぎる場合や小きすぎる場合であっても,特定の場合において標準の非パラメトリックレートを達成することができることを示す。
- 参考スコア(独自算出の注目度): 10.962094053749093
- License:
- Abstract: Node regression consists in predicting the value of a graph label at a node, given observations at the other nodes. To gain some insight into the performance of various estimators for this task, we perform a theoretical study in a context where the graph is random. Specifically, we assume that the graph is generated by a Latent Position Model, where each node of the graph has a latent position, and the probability that two nodes are connected depend on the distance between the latent positions of the two nodes. In this context, we begin by studying the simplest possible estimator for graph regression, which consists in averaging the value of the label at all neighboring nodes. We show that in Latent Position Models this estimator tends to a Nadaraya Watson estimator in the latent space, and that its rate of convergence is in fact the same. One issue with this standard estimator is that it averages over a region consisting of all neighbors of a node, and that depending on the graph model this may be too much or too little. An alternative consists in first estimating the true distances between the latent positions, then injecting these estimated distances into a classical Nadaraya Watson estimator. This enables averaging in regions either smaller or larger than the typical graph neighborhood. We show that this method can achieve standard nonparametric rates in certain instances even when the graph neighborhood is too large or too small.
- Abstract(参考訳): ノード回帰は、他のノードで観測されたグラフラベルの値を予測することで構成される。
この課題に対する様々な推定器の性能についていくつかの知見を得るため、グラフがランダムな状況下で理論的研究を行う。
具体的には、グラフの各ノードが潜伏位置を持つ潜伏位置モデルによりグラフが生成されると仮定し、2ノードが接続される確率は2ノードの潜伏位置間の距離に依存する。
この文脈では、グラフ回帰の最も単純な推定器の研究から始める。
ラテント位置モデルにおいて、この推定子はラテント空間におけるナダラヤ・ワトソン推定器に傾向があり、その収束速度は実際に同じであることを示す。
この標準推定器の1つの問題は、ノードのすべての隣人で構成される領域で平均化することであり、グラフモデルに依存すると、これは多すぎるか少なすぎるかもしれないことである。
もう一つの選択肢は、まず潜伏位置の間の真の距離を推定し、次にこれらの推定距離を古典的なナダラヤ・ワトソン推定器に注入することである。
これにより、通常のグラフ近傍よりも小さいか大きい領域での平均化が可能になる。
本手法は,グラフ近傍が大きすぎる場合や小きすぎる場合であっても,特定の場合において標準の非パラメトリックレートを達成することができることを示す。
関連論文リスト
- Generalization of Geometric Graph Neural Networks [84.01980526069075]
幾何グラフニューラルネットワーク(GNN)の一般化能力について検討する。
我々は,このGNNの最適経験リスクと最適統計リスクとの一般化ギャップを証明した。
最も重要な観察は、前の結果のようにグラフのサイズに制限されるのではなく、1つの大きなグラフで一般化能力を実現することができることである。
論文 参考訳(メタデータ) (2024-09-08T18:55:57Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - The Graphical Nadaraya-Watson Estimator on Latent Position Models [0.0]
我々は、ラベルのないノードがラベル付き隣人の観測平均を予測する平均推定器の品質に興味を持っている。
推定器自体は非常に単純であるが、グラフニューラルネットワークのようなより洗練された手法により、グラフ上の学習の理論的理解に寄与すると我々は信じている。
論文 参考訳(メタデータ) (2023-03-30T08:56:28Z) - Unveiling the Sampling Density in Non-Uniform Geometric Graphs [69.93864101024639]
グラフを幾何学グラフとみなす: ノードは基礎となる計量空間からランダムにサンプリングされ、その距離が指定された近傍半径以下であれば任意のノードが接続される。
ソーシャルネットワークでは、コミュニティは密集したサンプル領域としてモデル化でき、ハブはより大きな近傍半径を持つノードとしてモデル化できる。
我々は,未知のサンプリング密度を自己監督的に推定する手法を開発した。
論文 参考訳(メタデータ) (2022-10-15T08:01:08Z) - Node Copying: A Random Graph Model for Effective Graph Sampling [35.957719744856696]
本稿では,グラフ上の分布を構成するノードコピーモデルを提案する。
コピーモデルの有用性を3つのタスクで示す。
提案モデルを用いて,グラフトポロジに対する敵攻撃の効果を緩和する。
論文 参考訳(メタデータ) (2022-08-04T04:04:49Z) - Collaborative likelihood-ratio estimation over graphs [55.98760097296213]
グラフに基づく相対的制約のない最小二乗重要度フィッティング(GRULSIF)
我々はこの考え方を、グラフベースの相対的非制約最小二乗重要度フィッティング(GRULSIF)と呼ばれる具体的な非パラメトリック手法で開発する。
我々は、ノード当たりの観測回数、グラフのサイズ、およびグラフ構造がタスク間の類似性をどの程度正確にエンコードしているかといった変数が果たす役割を強調する、協調的なアプローチの収束率を導出する。
論文 参考訳(メタデータ) (2022-05-28T15:37:03Z) - Entropic Optimal Transport in Random Graphs [8.7314407902481]
グラフ解析において、古典的なタスクはノード間の(グループの)類似性の計算によって構成される。
潜在空間におけるノード群間の距離を連続的に推定することは可能であることを示す。
論文 参考訳(メタデータ) (2022-01-11T13:52:34Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Investigating Extensions to Random Walk Based Graph Embedding [0.3867052484157571]
ランダムウォークに基づくグラフ埋め込みの新たな拡張を提案する。これは、ウォークから最も頻度の低いノードのパーセンテージを異なるレベルで除去する。
この除去により、我々は遠く離れたノードがノードの近傍に存在することをシミュレートし、従ってそれらの接続を明示的に表現する。
その結果、ランダムウォークベースの手法の拡張(うちを含む)は、予測性能をほんの少しだけ改善することがわかった。
論文 参考訳(メタデータ) (2020-02-17T21:14:02Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。