The PV-ALE Dataset: Enhancing Apple Leaf Disease Classification Through Transfer Learning with Convolutional Neural Networks
- URL: http://arxiv.org/abs/2410.22490v1
- Date: Tue, 29 Oct 2024 19:30:22 GMT
- Title: The PV-ALE Dataset: Enhancing Apple Leaf Disease Classification Through Transfer Learning with Convolutional Neural Networks
- Authors: Joseph Damilola Akinyemi, Kolawole John Adebayo,
- Abstract summary: We extend the widely used PlantVillage dataset with additional apple leaf disease classes.
Test F1 scores of 99.63% and 97.87% were obtained on the original and extended datasets.
- Score: 0.0
- License:
- Abstract: As the global food security landscape continues to evolve, the need for accurate and reliable crop disease diagnosis has never been more pressing. To address global food security concerns, we extend the widely used PlantVillage dataset with additional apple leaf disease classes, enhancing diversity and complexity. Experimental evaluations on both original and extended datasets reveal that existing models struggle with the new additions, highlighting the need for more robust and generalizable computer vision models. Test F1 scores of 99.63% and 97.87% were obtained on the original and extended datasets, respectively. Our study provides a more challenging and diverse benchmark, paving the way for the development of accurate and reliable models for identifying apple leaf diseases under varying imaging conditions. The expanded dataset is available at https://www.kaggle.com/datasets/akinyemijoseph/apple-leaf-disease-dataset-6-classes-v2 enabling future research to build upon our findings.
Related papers
- PND-Net: Plant Nutrition Deficiency and Disease Classification using Graph Convolutional Network [18.778641229886393]
This article proposes a new deep learning method for plant nutrition deficiencies and disease classification using a graph convolutional network (GNN)
The proposed method, called Plant Nutrition Deficiency and Disease Network (PND-Net), is evaluated on two public datasets for nutrition deficiency, and two for disease classification using four CNNs.
arXiv Detail & Related papers (2024-10-16T17:01:28Z) - Evaluating Data Augmentation Techniques for Coffee Leaf Disease
Classification [2.0892083471064407]
This paper uses the RoCoLe dataset and approaches based on deep learning for classifying coffee leaf diseases from images.
Our study demonstrates the effectiveness of Transformer-based models, online augmentations, and CycleGAN augmentation in improving leaf disease classification.
arXiv Detail & Related papers (2024-01-11T09:22:36Z) - Generative models improve fairness of medical classifiers under
distribution shifts [49.10233060774818]
We show that learning realistic augmentations automatically from data is possible in a label-efficient manner using generative models.
We demonstrate that these learned augmentations can surpass ones by making models more robust and statistically fair in- and out-of-distribution.
arXiv Detail & Related papers (2023-04-18T18:15:38Z) - An Efficient Transfer Learning-based Approach for Apple Leaf Disease
Classification [0.0]
This study presents a technique for identifying apple leaf diseases based on transfer learning.
The competence of the proposed pipeline has been evaluated on the apple leaf disease subset from the publicly available PlantVillage' dataset.
arXiv Detail & Related papers (2023-04-10T08:48:36Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
We present findings from the largest Federated ML study to-date, involving data from 71 healthcare institutions across 6 continents.
We generate an automatic tumor boundary detector for the rare disease of glioblastoma.
We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent.
arXiv Detail & Related papers (2022-04-22T17:27:00Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
We propose class subset learning by dividing the long-tailed data into multiple class subsets according to prior knowledge.
It enforces the model to focus on learning the subset-specific knowledge.
The proposed framework proved to be effective for the long-tailed retinal diseases recognition task.
arXiv Detail & Related papers (2021-04-22T13:39:33Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Deep Learning for Apple Diseases: Classification and Identification [0.5735035463793008]
Disease and pests cause huge economic loss to the apple industry every year.
In this study, we propose a deep learning based approach for identification and classification of apple diseases.
arXiv Detail & Related papers (2020-07-06T18:08:58Z) - The Plant Pathology 2020 challenge dataset to classify foliar disease of
apples [0.0]
Apple orchards in the U.S. are under constant threat from a large number of pathogens and insects. Appropriate and timely deployment of disease management depends on early disease detection.
We have manually captured 3,651 high-quality, real-life symptom images of multiple apple foliar diseases.
A subset, expert-annotated to create a pilot dataset for apple scab, cedar apple rust, and healthy leaves, was made available to the Kaggle community for 'Plant Pathology Challenge'
arXiv Detail & Related papers (2020-04-24T19:36:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.