論文の概要: NASM: Neural Anisotropic Surface Meshing
- arxiv url: http://arxiv.org/abs/2410.23109v1
- Date: Wed, 30 Oct 2024 15:20:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:26:12.787096
- Title: NASM: Neural Anisotropic Surface Meshing
- Title(参考訳): NASM:ニューラル異方性表面メッシュ
- Authors: Hongbo Li, Haikuan Zhu, Sikai Zhong, Ningna Wang, Cheng Lin, Xiaohu Guo, Shiqing Xin, Wenping Wang, Jing Hua, Zichun Zhong,
- Abstract要約: 本稿では、異方性表面メッシュのための学習に基づく新しい手法NASMを提案する。
鍵となるアイデアは、入力メッシュを高次元ユークリッド埋め込み空間に埋め込み、曲率ベースの異方性計量を保存することである。
そこで,本研究では,新たに生成した高次元埋め込みにおける特徴感リメッシングを提案し,鮮明な幾何学的特徴を自動キャプチャする。
- 参考スコア(独自算出の注目度): 38.8654207201197
- License:
- Abstract: This paper introduces a new learning-based method, NASM, for anisotropic surface meshing. Our key idea is to propose a graph neural network to embed an input mesh into a high-dimensional (high-d) Euclidean embedding space to preserve curvature-based anisotropic metric by using a dot product loss between high-d edge vectors. This can dramatically reduce the computational time and increase the scalability. Then, we propose a novel feature-sensitive remeshing on the generated high-d embedding to automatically capture sharp geometric features. We define a high-d normal metric, and then derive an automatic differentiation on a high-d centroidal Voronoi tessellation (CVT) optimization with the normal metric to simultaneously preserve geometric features and curvature anisotropy that exhibit in the original 3D shapes. To our knowledge, this is the first time that a deep learning framework and a large dataset are proposed to construct a high-d Euclidean embedding space for 3D anisotropic surface meshing. Experimental results are evaluated and compared with the state-of-the-art in anisotropic surface meshing on a large number of surface models from Thingi10K dataset as well as tested on extensive unseen 3D shapes from Multi-Garment Network dataset and FAUST human dataset.
- Abstract(参考訳): 本稿では、異方性表面メッシュのための学習に基づく新しい手法NASMを提案する。
我々のキーとなる考え方は、高次元(高次元)ユークリッド埋め込み空間に入力メッシュを埋め込み、高次元エッジベクトル間のドット積損失を用いて曲率ベースの異方性計量を保存するグラフニューラルネットワークを提案することである。
これにより、計算時間が劇的に短縮され、スケーラビリティが向上する。
そこで,本研究では,新たに生成した高次元埋め込みにおける特徴感リメッシングを提案し,鮮明な幾何学的特徴を自動キャプチャする。
我々は,高次元の標準距離を定め,その後,従来の3次元形状に現れる幾何的特徴と曲率異方性を同時に保存するために,高次元のVoronoiテッセルレーション(CVT)最適化を標準距離で自動微分する。
我々の知る限り、3次元異方性表面メッシュのための高次元ユークリッド埋め込み空間を構築するために、ディープラーニングフレームワークと大規模なデータセットが提案されたのは、これが初めてである。
実験結果は、Thingi10Kデータセットから得られた多数の表面モデル上での異方性表面メッシュの最先端性と、Multi-Garment NetworkデータセットとFAUSTヒューマンデータセットから得られた広範囲な未知の3D形状の試験結果と比較された。
関連論文リスト
- DreamMesh4D: Video-to-4D Generation with Sparse-Controlled Gaussian-Mesh Hybrid Representation [10.250715657201363]
本稿では,メッシュ表現と幾何スキン技術を組み合わせた新しいフレームワークDreamMesh4Dを紹介し,モノクロビデオから高品質な4Dオブジェクトを生成する。
我々の手法は現代のグラフィックパイプラインと互換性があり、3Dゲームや映画産業におけるその可能性を示している。
論文 参考訳(メタデータ) (2024-10-09T10:41:08Z) - Flatten Anything: Unsupervised Neural Surface Parameterization [76.4422287292541]
本研究では,FAM(Flatten Anything Model)を導入し,グローバルな自由境界面パラメータ化を実現する。
従来の手法と比較して,FAMは接続情報を活用することなく,個別の面上で直接動作する。
当社のFAMは前処理を必要とせずに完全に自動化されており,高度に複雑なトポロジを扱うことができる。
論文 参考訳(メタデータ) (2024-05-23T14:39:52Z) - Flexible Isosurface Extraction for Gradient-Based Mesh Optimization [65.76362454554754]
本研究では、勾配に基づくメッシュ最適化について考察し、スカラー場の等曲面として表現することで、3次元表面メッシュを反復的に最適化する。
我々は、幾何学的、視覚的、あるいは物理的目的に対して未知のメッシュを最適化するために特別に設計された、異面表現であるFlexiCubesを紹介する。
論文 参考訳(メタデータ) (2023-08-10T06:40:19Z) - HR-NeuS: Recovering High-Frequency Surface Geometry via Neural Implicit
Surfaces [6.382138631957651]
我々は新しい暗黙表面再構成法であるHigh-Resolution NeuSを提案する。
HR-NeuSは大規模な再構成精度を維持しながら高周波表面形状を復元する。
我々は,DTUおよびBlendedMVSデータセットを用いた実験により,従来の手法と同等の精度で定性的に詳細かつ定量的な3次元測地を生成できることを実証した。
論文 参考訳(メタデータ) (2023-02-14T02:25:16Z) - Learning Neural Radiance Fields from Multi-View Geometry [1.1011268090482573]
画像に基づく3次元再構成のために,多視点幾何アルゴリズムとニューラルレージアンス場(NeRF)を組み合わせたMVG-NeRF(MVG-NeRF)というフレームワークを提案する。
NeRFは暗黙の3D表現の分野に革命をもたらした。
論文 参考訳(メタデータ) (2022-10-24T08:53:35Z) - Learned Vertex Descent: A New Direction for 3D Human Model Fitting [64.04726230507258]
画像やスキャンに適合する3次元人体モデルのための新しい最適化手法を提案する。
われわれのアプローチは、非常に異なる体型を持つ服を着た人々の基盤となる身体を捉えることができ、最先端技術と比べて大きな改善を達成できる。
LVDはまた、人間と手の3次元モデル適合にも適用でき、よりシンプルで高速な方法でSOTAに大きな改善が示される。
論文 参考訳(メタデータ) (2022-05-12T17:55:51Z) - Geometry-Contrastive Transformer for Generalized 3D Pose Transfer [95.56457218144983]
この研究の直感は、与えられたメッシュ間の幾何学的不整合を強力な自己認識機構で知覚することである。
本研究では,グローバルな幾何学的不整合に対する3次元構造的知覚能力を有する新しい幾何学コントラスト変換器を提案する。
本稿では, クロスデータセット3次元ポーズ伝達タスクのための半合成データセットとともに, 潜時等尺正則化モジュールを提案する。
論文 参考訳(メタデータ) (2021-12-14T13:14:24Z) - PUGeo-Net: A Geometry-centric Network for 3D Point Cloud Upsampling [103.09504572409449]
PUGeo-Netと呼ばれる新しいディープニューラルネットワークを用いた一様高密度点雲を生成する手法を提案する。
その幾何学中心の性質のおかげで、PUGeo-Netはシャープな特徴を持つCADモデルとリッチな幾何学的詳細を持つスキャンされたモデルの両方でうまく機能する。
論文 参考訳(メタデータ) (2020-02-24T14:13:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。