論文の概要: Improved convergence rate of kNN graph Laplacians
- arxiv url: http://arxiv.org/abs/2410.23212v1
- Date: Wed, 30 Oct 2024 17:01:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:24:06.293823
- Title: Improved convergence rate of kNN graph Laplacians
- Title(参考訳): kNNグラフラプラシアンの収束率の改善
- Authors: Yixuan Tan, Xiuyuan Cheng,
- Abstract要約: k$NNグラフの一般クラスで、グラフ親和性は$W_ij = epsilon-d/2 である。
制限多様体作用素に対する$k$NNグラフ Laplacian の点収束性を証明する。
- 参考スコア(独自算出の注目度): 11.93971616098517
- License:
- Abstract: In graph-based data analysis, $k$-nearest neighbor ($k$NN) graphs are widely used due to their adaptivity to local data densities. Allowing weighted edges in the graph, the kernelized graph affinity provides a more general type of $k$NN graph where the $k$NN distance is used to set the kernel bandwidth adaptively. In this work, we consider a general class of $k$NN graph where the graph affinity is $W_{ij} = \epsilon^{-d/2} \; k_0 ( \| x_i - x_j \|^2 / \epsilon \phi( \widehat{\rho}(x_i), \widehat{\rho}(x_j) )^2 ) $, with $\widehat{\rho}(x)$ being the (rescaled) $k$NN distance at the point $x$, $\phi$ a symmetric bi-variate function, and $k_0$ a non-negative function on $[0,\infty)$. Under the manifold data setting, where $N$ i.i.d. samples $x_i$ are drawn from a density $p$ on a $d$-dimensional unknown manifold embedded in a high dimensional Euclidean space, we prove the point-wise convergence of the $k$NN graph Laplacian to the limiting manifold operator (depending on $p$) at the rate of $O(N^{-2/(d+6)}\,)$, up to a log factor, when $k_0$ and $\phi$ have $C^3$ regularity and satisfy other technical conditions. This fast rate is obtained when $\epsilon \sim N^{-2/(d+6)}\,$ and $k \sim N^{6/(d+6)}\,$, both at the optimal order to balance the theoretical bias and variance errors. When $k_0$ and $\phi$ have lower regularities, including when $k_0$ is a compactly supported function as in the standard $k$NN graph, the convergence rate degenerates to $O(N^{-1/(d+4)}\,)$. Our improved convergence rate is based on a refined analysis of the $k$NN estimator, which can be of independent interest. We validate our theory by numerical experiments on simulated data.
- Abstract(参考訳): グラフベースのデータ分析では、$k$-nearest neighbor(k$NN)グラフが局所的なデータ密度への適応性のために広く使用されている。
グラフの重み付きエッジが与えられ、カーネル化グラフ親和性はより一般的な$k$NNグラフを提供し、$k$NN距離を使用してカーネル帯域幅を適応的に設定する。
この研究において、グラフ親和性が$W_{ij} = \epsilon^{-d/2} \; k_0 ( \| x_i - x_j \|^2 / \epsilon \phi( \widehat{\rho}(x_i), \widehat{\rho}(x_j) )^2 ) $, with $\widehat{\rho}(x)$ is the (rescaled) $k$NN distance at the point $x$, $\phi$ a symmetric bi-variate function, $k_0$
多様体データ設定の下では、$N$ i.d. sample $x_i$ は、高次元ユークリッド空間に埋め込まれた$d$-次元未知多様体上の密度 $p$ から引き出されるが、$k$NNグラフ Laplacian の極限多様体作用素への点収束を、$O(N^{-2/(d+6)}\,)$ の速度で証明する。
この速さは$\epsilon \sim N^{-2/(d+6)}\,$と$k \sim N^{6/(d+6)}\,$が理論バイアスと分散誤差のバランスをとる最適順序で得られる。
k_0$ と $\phi$ が、標準的な $k$NN グラフのようにコンパクトにサポートされた関数であるとき、収束率は $O(N^{-1/(d+4)}\,)$ に縮退する。
改良された収束速度は、独立性のある$k$NN推定器の洗練された解析に基づいている。
シミュレーションデータを用いた数値実験により,本理論を検証した。
関連論文リスト
- On the $O(\frac{\sqrt{d}}{T^{1/4}})$ Convergence Rate of RMSProp and Its Momentum Extension Measured by $\ell_1$ Norm [59.65871549878937]
本稿では、RMSPropとその運動量拡張を考察し、$frac1Tsum_k=1Tの収束速度を確立する。
我々の収束率は、次元$d$を除くすべての係数に関して下界と一致する。
収束率は$frac1Tsum_k=1Tと類似していると考えられる。
論文 参考訳(メタデータ) (2024-02-01T07:21:32Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
非線形測定では、ほとんどの先行結果は一様ではない、すなわち、すべての$mathbfx*$に対してではなく、固定された$mathbfx*$に対して高い確率で保持される。
本フレームワークはGCSに1ビット/一様量子化観測と単一インデックスモデルを標準例として適用する。
また、指標集合が計量エントロピーが低い製品プロセスに対して、より厳密な境界を生み出す濃度不等式も開発する。
論文 参考訳(メタデータ) (2023-09-25T17:54:19Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
モノトン活性化に対する $mathbfxmapstosigma(mathbfwcdotmathbfx)$ の関数について検討する。
学習者の目標は仮説ベクトル $mathbfw$ that $F(mathbbw)=C, epsilon$ を高い確率で出力することである。
論文 参考訳(メタデータ) (2022-06-17T17:55:43Z) - Structure Learning in Graphical Models from Indirect Observations [17.521712510832558]
本稿では、パラメータ法と非パラメトリック法の両方を用いて、Rp$における$p$次元ランダムベクトル$Xのグラフィカル構造を学習する。
温和な条件下では、グラフ構造推定器が正しい構造を得ることができることを示す。
論文 参考訳(メタデータ) (2022-05-06T19:24:44Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
我々は、$bf K$ の固有スペクトルが$bf w$ の i.d. 成分の分布とは独立であることを示す。
3次ランダム特徴(TRF)と呼ばれる新しいランダム手法を提案する。
提案したランダムな特徴の計算には乗算が不要であり、古典的なランダムな特徴に比べてストレージに$b$のコストがかかる。
論文 参考訳(メタデータ) (2021-10-05T09:33:49Z) - Minimax Optimal Regression over Sobolev Spaces via Laplacian
Regularization on Neighborhood Graphs [25.597646488273558]
非パラメトリック回帰に対するグラフに基づくアプローチであるラプラシア平滑化の統計的性質について検討する。
ラプラシアン滑らか化が多様体適応であることを証明する。
論文 参考訳(メタデータ) (2021-06-03T01:20:41Z) - Non-Parametric Estimation of Manifolds from Noisy Data [1.0152838128195467]
ノイズの多いサンプルの有限集合から$mathbbRD$の$d$次元部分多様体を推定する問題を検討する。
点推定では$n-frack2k + d$、接空間の推定では$n-frack-12k + d$の収束率を推定する。
論文 参考訳(メタデータ) (2021-05-11T02:29:33Z) - From Smooth Wasserstein Distance to Dual Sobolev Norm: Empirical
Approximation and Statistical Applications [18.618590805279187]
我々は$mathsfW_p(sigma)$が$pth次スムーズな双対ソボレフ$mathsfd_p(sigma)$で制御されていることを示す。
我々は、すべての次元において$sqrtnmathsfd_p(sigma)(hatmu_n,mu)$の極限分布を導出する。
論文 参考訳(メタデータ) (2021-01-11T17:23:24Z) - Convergence of Graph Laplacian with kNN Self-tuned Kernels [14.645468999921961]
自己チューニングされたカーネルは、各点に$sigma_i$ を $k$-nearest neighbor (kNN) 距離で適応的に設定する。
本稿では、グラフラプラシアン作用素$L_N$を、kNN自己チューニングカーネルの新しい族に対する多様体(重み付き)ラプラシアンに収束することを証明する。
論文 参考訳(メタデータ) (2020-11-03T04:55:33Z) - Linear Time Sinkhorn Divergences using Positive Features [51.50788603386766]
エントロピー正則化で最適な輸送を解くには、ベクトルに繰り返し適用される$ntimes n$ kernel matrixを計算する必要がある。
代わりに、$c(x,y)=-logdotpvarphi(x)varphi(y)$ ここで$varphi$は、地上空間から正のorthant $RRr_+$への写像であり、$rll n$である。
論文 参考訳(メタデータ) (2020-06-12T10:21:40Z) - Agnostic Learning of a Single Neuron with Gradient Descent [92.7662890047311]
期待される正方形損失から、最も適合した単一ニューロンを学習することの問題点を考察する。
ReLUアクティベーションでは、我々の人口リスク保証は$O(mathsfOPT1/2)+epsilon$である。
ReLUアクティベーションでは、我々の人口リスク保証は$O(mathsfOPT1/2)+epsilon$である。
論文 参考訳(メタデータ) (2020-05-29T07:20:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。