論文の概要: Non-binary artificial neuron with phase variation implemented on a quantum computer
- arxiv url: http://arxiv.org/abs/2410.23373v1
- Date: Wed, 30 Oct 2024 18:18:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:03:56.538491
- Title: Non-binary artificial neuron with phase variation implemented on a quantum computer
- Title(参考訳): 量子コンピュータ上に実装された位相変化を持つ非二元人工ニューロン
- Authors: Jhordan Silveira de Borba, Jonas Maziero,
- Abstract要約: 複素数の位相を操作するバイナリモデルを一般化するアルゴリズムを導入する。
量子コンピュータにおける連続的な値を扱うニューロンモデルを提案し,検証し,実装する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The first artificial quantum neuron models followed a similar path to classic models, as they work only with discrete values. Here we introduce an algorithm that generalizes the binary model manipulating the phase of complex numbers. We propose, test, and implement a neuron model that works with continuous values in a quantum computer. Through simulations, we demonstrate that our model may work in a hybrid training scheme utilizing gradient descent as a learning algorithm. This work represents another step in the direction of evaluation of the use of artificial neural networks efficiently implemented on near-term quantum devices.
- Abstract(参考訳): 最初の人工量子ニューロンモデルは、離散値のみを扱うため、古典的なモデルと同様の経路を辿った。
ここでは,複素数の位相を操作する二項モデルを一般化するアルゴリズムを提案する。
量子コンピュータにおける連続的な値を扱うニューロンモデルを提案し,検証し,実装する。
シミュレーションにより,勾配降下を学習アルゴリズムとして用いたハイブリッド学習手法が提案できることを示した。
この研究は、短期量子デバイスに効率的に実装された人工ニューラルネットワークの使用を評価するための別のステップである。
関連論文リスト
- Information-driven Nonlinear Quantum Neuron [0.0]
本研究では,オープン量子システムとして動作するハードウェア効率の高い量子ニューラルネットワークを提案する。
入力量子情報のパラメトリゼーションが容易な繰り返し相互作用に基づくこの散逸モデルが、微分可能非線形活性化関数を示すことを示す。
論文 参考訳(メタデータ) (2023-07-18T07:12:08Z) - Tensor Networks or Decision Diagrams? Guidelines for Classical Quantum
Circuit Simulation [65.93830818469833]
テンソルネットワークと決定図は、異なる視点、用語、背景を念頭に、独立して開発されている。
これらの手法が古典的量子回路シミュレーションにどのようにアプローチするかを考察し、最も適用可能な抽象化レベルに関してそれらの相似性を考察する。
量子回路シミュレーションにおいて,テンソルネットワークの使い勝手の向上と決定図の使い勝手の向上に関するガイドラインを提供する。
論文 参考訳(メタデータ) (2023-02-13T19:00:00Z) - Artificial stochastic neural network on the base of double quantum wells [0.0]
本稿では,量子力学粒子を応用したニューラルネットワークのモデルについて検討する。
粒子の自己ポテンシャルの形式と2つの相互作用ポテンシャル(励起と阻害)が提案される。
論文 参考訳(メタデータ) (2022-08-16T07:54:19Z) - New quantum neural network designs [0.0]
本稿では,新しい量子ニューラルネットワークの設計性能について検討する。
我々は特徴マップと変分回路を1つのパラメータ化回路にマージする新しい手法を開発した。
損失の低減、精度の向上、収束の高速化を実現しています。
論文 参考訳(メタデータ) (2022-03-12T10:20:14Z) - Comparing concepts of quantum and classical neural network models for
image classification task [0.456877715768796]
本資料は、ハイブリッド量子古典ニューラルネットワークのトレーニングと性能に関する実験結果を含む。
シミュレーションは時間を要するが、量子ネットワークは時間を要するが、古典的なネットワークを克服する。
論文 参考訳(メタデータ) (2021-08-19T18:49:30Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z) - Quantum Deformed Neural Networks [83.71196337378022]
我々は,量子コンピュータ上で効率的に動作するように設計された新しい量子ニューラルネットワーク層を開発した。
入力状態の絡み合いに制限された場合、古典的なコンピュータでシミュレートすることができる。
論文 参考訳(メタデータ) (2020-10-21T09:46:12Z) - Reservoir Memory Machines as Neural Computers [70.5993855765376]
微分可能なニューラルネットワークは、干渉することなく明示的なメモリで人工ニューラルネットワークを拡張する。
我々は、非常に効率的に訓練できるモデルを用いて、微分可能なニューラルネットワークの計算能力を実現する。
論文 参考訳(メタデータ) (2020-09-14T12:01:30Z) - Recurrent Quantum Neural Networks [7.6146285961466]
リカレントニューラルネットワークは、機械学習における多くのシーケンス対シーケンスモデルの基盤となっている。
非自明なタスクに対して実証可能な性能を持つ量子リカレントニューラルネットワーク(QRNN)を構築する。
我々はQRNNをMNIST分類で評価し、QRNNに各画像ピクセルを供給し、また、最新のデータ拡張を前処理のステップとして利用する。
論文 参考訳(メタデータ) (2020-06-25T17:59:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。