Efficient Detection of Strong-To-Weak Spontaneous Symmetry Breaking via the Rényi-1 Correlator
- URL: http://arxiv.org/abs/2410.23512v2
- Date: Tue, 05 Nov 2024 22:12:00 GMT
- Title: Efficient Detection of Strong-To-Weak Spontaneous Symmetry Breaking via the Rényi-1 Correlator
- Authors: Zack Weinstein,
- Abstract summary: Strong-to-weak spontaneous symmetry breaking (SW SSB) has recently emerged as a universal feature of quantum mixed-state phases of matter.
Here we propose a new observable for SW SSB in mixed states, called the R'enyi-1 correlator, which naturally suggests a potential route towards scalably detecting SW SSB phases in experiment.
Specifically, if the canonical purification (CP) of a given mixed state can be reliably prepared, then SW SSB in the mixed state can be detected via ordinary two-point correlation functions in the CP state.
- Score: 0.0
- License:
- Abstract: Strong-to-weak spontaneous symmetry breaking (SWSSB) has recently emerged as a universal feature of quantum mixed-state phases of matter. While various information-theoretic diagnostics have been proposed to define and characterize SWSSB phases, relating these diagnostics to observables which can be efficiently and scalably probed on modern quantum devices remains challenging. Here we propose a new observable for SWSSB in mixed states, called the R\'enyi-1 correlator, which naturally suggests a potential route towards scalably detecting SWSSB phases in experiment. Specifically, if the canonical purification (CP) of a given mixed state can be reliably prepared, then SWSSB in the mixed state can be detected via ordinary two-point correlation functions in the CP state. We discuss several simple examples of CP states which can be efficiently prepared on quantum devices, and whose reduced density matrices exhibit SWSSB. The R\'enyi-1 correlator also satisfies several useful theoretical properties: it naturally inherits a stability theorem recently proven for the closely-related fidelity correlator, and it directly defines SWSSB as a particular pattern of ordinary spontaneous symmetry breaking in the CP state.
Related papers
- Strong-to-weak symmetry breaking states in stochastic dephasing stabilizer circuits [0.0]
Under symmetry-respective decoherence, spontaneous strong-to-weak symmetry breaking can occur.
This work provides a scheme to describe S SSB and other decoherence phenomena in the mixed state by employing the stabilizer formalism and the efficient numerical algorithm of Clifford circuits.
arXiv Detail & Related papers (2024-08-08T06:03:23Z) - Experimental demonstration of spontaneous symmetry breaking with emergent multi-qubit entanglement [10.791982177923412]
Spontaneous symmetry breaking ( SSB) is crucial to the occurrence of phase transitions.
We present an experimental demonstration of the SSB process in the Lipkin-Meshkov-Glick model.
The observed nonclassical correlations among these qubits in the symmetry-breaking region go beyond the conventional description of SSB.
arXiv Detail & Related papers (2024-07-17T13:50:29Z) - A logical qubit-design with geometrically tunable error-resistibility [0.46873264197900916]
We propose a setup for a logical qubit built from superconducting qubits (SCQs) coupled to a microwave cavity-mode.
Our design is based on a recently discovered geometric stabilizing mechanism in the Bose-Hubbard wheel (BHW)
arXiv Detail & Related papers (2024-05-13T19:32:58Z) - Strong-to-Weak Spontaneous Symmetry Breaking in Mixed Quantum States [10.383582684153945]
This paper explores a novel type of spontaneous symmetry breaking ( SSB) where a strong symmetry is broken to a weak one.
We prove that SW- SSB is a universal property of mixed-state quantum phases.
We argue that a thermal state at a nonzero temperature in the canonical ensemble (with fixed symmetry charge) should have spontaneously broken strong symmetry.
arXiv Detail & Related papers (2024-05-06T16:59:01Z) - Nonclassicality in Two-Mode Stabilized Squeezed Coherent State: Quantum-to-Classical transition [0.0]
We introduce the $Pi_rm N$ indicator, a novel measure for characterizing nonclassicality in the resulting EPR-entangled state.
Our work deepens the understanding of the intricate dependence of nonclassicality on system parameters in the context of SSCS.
The potential of $Pi_rm N$ holds significant promise for advancements in quantum optics and information science.
arXiv Detail & Related papers (2024-04-19T10:02:13Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Many-body Hilbert space scarring on a superconducting processor [19.205729719781548]
Quantum many-body scarring (QMBS) is a recently discovered form of weak ergodicity breaking in strongly-interacting quantum systems.
Here, we experimentally realize a distinct kind of QMBS phenomena by approximately decoupling a part of the many-body Hilbert space in the computational basis.
Our experimental findings broaden the realm of QMBS mechanisms and pave the way to exploiting correlations in QMBS states for applications in quantum information technology.
arXiv Detail & Related papers (2022-01-10T16:33:38Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Exact many-body scars and their stability in constrained quantum chains [55.41644538483948]
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy.
We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size.
arXiv Detail & Related papers (2020-11-16T19:05:50Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.