論文の概要: Automated Global Analysis of Experimental Dynamics through Low-Dimensional Linear Embeddings
- arxiv url: http://arxiv.org/abs/2411.00989v1
- Date: Fri, 01 Nov 2024 19:27:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:46:08.402212
- Title: Automated Global Analysis of Experimental Dynamics through Low-Dimensional Linear Embeddings
- Title(参考訳): 低次元線形埋め込みによる実験力学のグローバル自動解析
- Authors: Samuel A. Moore, Brian P. Mann, Boyuan Chen,
- Abstract要約: 非線形力学系に対する低次元線形モデルを導出するためのデータ駆動型計算フレームワークを提案する。
このフレームワークは、基盤となるシステム構造をキャプチャする解釈可能な線形モデルを通じて、大域的な安定性解析を可能にする。
本手法は, 物理, 気候科学, 工学などの分野にまたがる複雑な力学挙動を解析するための, 有望な経路を提供する。
- 参考スコア(独自算出の注目度): 3.825457221275617
- License:
- Abstract: Dynamical systems theory has long provided a foundation for understanding evolving phenomena across scientific domains. Yet, the application of this theory to complex real-world systems remains challenging due to issues in mathematical modeling, nonlinearity, and high dimensionality. In this work, we introduce a data-driven computational framework to derive low-dimensional linear models for nonlinear dynamical systems directly from raw experimental data. This framework enables global stability analysis through interpretable linear models that capture the underlying system structure. Our approach employs time-delay embedding, physics-informed deep autoencoders, and annealing-based regularization to identify novel low-dimensional coordinate representations, unlocking insights across a variety of simulated and previously unstudied experimental dynamical systems. These new coordinate representations enable accurate long-horizon predictions and automatic identification of intricate invariant sets while providing empirical stability guarantees. Our method offers a promising pathway to analyze complex dynamical behaviors across fields such as physics, climate science, and engineering, with broad implications for understanding nonlinear systems in the real world.
- Abstract(参考訳): 力学系理論は長い間、科学的領域を越えて進化する現象を理解する基盤を提供してきた。
しかし、この理論を複雑な実世界のシステムに適用することは、数学的モデリング、非線形性、高次元性といった問題のために依然として難しい。
本研究では,非線形力学系に対する低次元線形モデルを生実験データから直接導出する,データ駆動型計算フレームワークを提案する。
このフレームワークは、基盤となるシステム構造をキャプチャする解釈可能な線形モデルを通じて、大域的な安定性解析を可能にする。
提案手法では, 時間遅延埋め込み, 物理インフォームドディープオートエンコーダ, およびアニールベース正規化を用いて, 新たな低次元座標表現を同定し, 様々なシミュレーションおよび以前に研究された実験力学系の洞察を解き放つ。
これらの新しい座標表現は、経験的安定性の保証を提供しながら、正確な長距離予測と複雑な不変集合の自動識別を可能にする。
本手法は, 物理, 気候科学, 工学などの分野にまたがる複雑な力学挙動を解析し, 実世界の非線形システムを理解するための幅広い意味を持つ。
関連論文リスト
- Physically Analyzable AI-Based Nonlinear Platoon Dynamics Modeling During Traffic Oscillation: A Koopman Approach [4.379212829795889]
物理的アナライザビリティを同時に達成しつつ、高精度なモデリング手法が不可欠である。
本稿では,AIのパワーを利用した未知の非線形プラトン力学をモデル化するためのAIベースのクープマン手法を提案する。
論文 参考訳(メタデータ) (2024-06-20T19:35:21Z) - eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling [9.52474299688276]
非線形状態空間グラフィカルモデルのための低ランク構造化変分オートエンコーダフレームワークを提案する。
我々のアプローチは、より予測的な生成モデルを学ぶ能力を一貫して示している。
論文 参考訳(メタデータ) (2024-03-03T02:19:49Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
本研究では,高次元経験データから力学系を学習する手法を提案する。
我々は、システムの複数の異なるインスタンスからデータが利用できる設定に焦点を当てる。
我々は、単純な理論的分析と、合成および実世界のデータセットに関する広範な実験を通して行動を研究する。
論文 参考訳(メタデータ) (2023-06-21T07:52:07Z) - Autoencoders for discovering manifold dimension and coordinates in data
from complex dynamical systems [0.0]
Autoencoder frameworkは暗黙の正則化と内部線形層と$L$正則化(重崩壊)を組み合わせる
このフレームワークは、状態空間モデリングや予測の応用のために自然に拡張できることを示す。
論文 参考訳(メタデータ) (2023-05-01T21:14:47Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
我々は物理誘導型Deep Markov Model(PgDMM)という物理誘導型フレームワークを提案する。
提案手法は,動的システムの駆動物理を維持しながら,ディープラーニングの表現力を利用する。
論文 参考訳(メタデータ) (2021-10-16T16:35:12Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
状態遷移が既知の状態-作用対の特徴埋め込みに線形に依存する非線形力学系のクラスについて検討する。
そこで本稿では, トラジェクティブ・プランニング, トラジェクティブ・トラッキング, システムの再推定という3つのステップを繰り返すことで, この問題を解決するためのアクティブ・ラーニング・アプローチを提案する。
本手法は, 非線形力学系を標準線形回帰の統計速度と同様, パラメトリック速度で推定する。
論文 参考訳(メタデータ) (2020-06-18T04:54:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。