論文の概要: How Memory-Safe is IoT? Assessing the Impact of Memory-Protection Solutions for Securing Wireless Gateways
- arxiv url: http://arxiv.org/abs/2411.01377v1
- Date: Sat, 02 Nov 2024 23:00:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:45:36.978496
- Title: How Memory-Safe is IoT? Assessing the Impact of Memory-Protection Solutions for Securing Wireless Gateways
- Title(参考訳): IoTはメモリセーフか? セキュアな無線ゲートウェイにおけるメモリ保護ソリューションの影響を評価する
- Authors: Vadim Safronov, Ionut Bostan, Nicholas Allott, Andrew Martin,
- Abstract要約: メモリベースの脆弱性は、ソフトウェアで最も深刻な脅威の1つであり、汎用的なソリューションはまだ提供されていない。
本稿では,最近の無線ゲートウェイにおけるメモリ関連脆弱性の大規模解析を通じて,メモリ安全性がIoT領域に与える影響について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The rapid development of the Internet of Things (IoT) has enabled novel user-centred applications, including many in safety-critical areas such as healthcare, smart environment security, and emergency response systems. The diversity in IoT manufacturers, standards, and devices creates a combinatorial explosion of such deployment scenarios, leading to increased security and safety threats due to the difficulty of managing such heterogeneity. In almost every IoT deployment, wireless gateways are crucial for interconnecting IoT devices and providing services, yet they are vulnerable to external threats and serve as key entry points for large-scale IoT attacks. Memory-based vulnerabilities are among the most serious threats in software, with no universal solution yet available. Legacy memory protection mechanisms, such as canaries, RELRO, NX, and Fortify, have enhanced memory safety but remain insufficient for comprehensive protection. Emerging technologies like ARM-MTE, CHERI, and Rust are based on more universal and robust Secure-by-Design (SbD) memory safety principles, yet each entails different trade-offs in hardware or code modifications. Given the challenges of balancing security levels with associated overheads in IoT systems, this paper explores the impact of memory safety on the IoT domain through an empirical large-scale analysis of memory-related vulnerabilities in modern wireless gateways. Our results show that memory vulnerabilities constitute the majority of IoT gateway threats, underscoring the necessity for SbD solutions, with the choice of memory-protection technology depending on specific use cases and associated overheads.
- Abstract(参考訳): IoT(Internet of Things)の急速な開発により、医療、スマート環境セキュリティ、緊急対応システムなど、安全クリティカルな領域の多くを含む、新しいユーザ中心のアプリケーションが可能になった。
IoTメーカー、標準、デバイスの多様性は、そのようなデプロイメントシナリオの組合せ的な爆発を引き起こし、そのような異種性を管理するのが難しいため、セキュリティと安全性の脅威が増大する。
ほぼすべてのIoTデプロイメントにおいて、無線ゲートウェイはIoTデバイス間の相互接続やサービス提供に不可欠だが、外部の脅威に対して脆弱であり、大規模なIoT攻撃の重要なエントリポイントとして機能する。
メモリベースの脆弱性は、ソフトウェアで最も深刻な脅威の1つであり、汎用的なソリューションはまだ提供されていない。
カナリア、RELRO、NX、Fortifyなどのレガシーメモリ保護機構は、メモリ安全性を高めているが、包括的な保護には不十分である。
ARM-MTE、CHERI、Rustといった新興技術は、より普遍的で堅牢なSecure-by-Design(SbD)メモリ安全性原則に基づいているが、ハードウェアやコード修正のトレードオフはさまざまである。
セキュリティレベルとIoTシステムのオーバーヘッドのバランスをとる上での課題として,現代の無線ゲートウェイにおけるメモリ関連脆弱性の大規模解析を通じて,IoT領域におけるメモリ安全性の影響について検討する。
我々の結果は、メモリの脆弱性がIoTゲートウェイの脅威の大部分を占めており、特定のユースケースと関連するオーバーヘッドに応じてメモリ保護技術を選択することで、SbDソリューションの必要性を強調している。
関連論文リスト
- Cyberattack Data Analysis in IoT Environments using Big Data [0.0]
私たちの研究は、相互運用性や標準化プロトコルなど、接続性やセキュリティ上の課題の増加に対処しています。
セキュリティ脆弱性の詳細な分析では、攻撃行動、ネットワークトラフィック異常、TCPフラグの使用、ターゲット攻撃など、複雑なパターンと脅威を特定しました。
論文 参考訳(メタデータ) (2024-06-14T02:12:43Z) - Differentiated Security Architecture for Secure and Efficient Infotainment Data Communication in IoV Networks [55.340315838742015]
IoVネットワークにおけるインフォテインメントデータ通信の安全性の欠如は、社会的エンジニアリング攻撃の容易なアクセスポイントを意図せずに開放することができる。
特に、まずIoVネットワークでデータ通信を分類し、各データ通信のセキュリティ焦点を調べ、その後、ファイル間通信でセキュリティ保護を提供するための異なるセキュリティアーキテクチャを開発する。
論文 参考訳(メタデータ) (2024-03-29T12:01:31Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - IoT in the Cloud: Exploring Security Challenges and Mitigations for a Connected World [18.36339203254509]
IoT(Internet of Things)は近年顕著な進歩を遂げており、デジタルランドスケープのパラダイムシフトにつながっている。
IoTデバイスは本質的にインターネットに接続されており、様々なタイプの攻撃を受けやすい。
IoTサービスは、悪意のあるアクターや不正なサービスプロバイダによって悪用される可能性のある、機密性の高いユーザデータを扱うことが多い。
論文 参考訳(メタデータ) (2024-02-01T05:55:43Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Fortress: Securing IoT Peripherals with Trusted Execution Environments [2.2476099815732518]
IoT(Internet of Things)デバイスは、マイクロフォンやカメラなどの周辺入力を通じて、オーディオや視覚データなどの機密情報を収集することが多い。
信頼された実行環境(TEE)のセキュアなカーネル空間において、周辺I/Oメモリ領域を分離することにより、IoTベースのシステムのプライバシを高めるための汎用設計を提案する。
その後、センシティブな周辺データはユーザ空間TEEに安全に転送され、クラウドなど第三者に中継する前に難読化機構を適用することができる。
論文 参考訳(メタデータ) (2023-12-05T07:12:58Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
本稿ではIoTマルウェアの分類について述べる。
攻撃の主要なターゲットと使用済みのエクスプロイトが特定され、特定のマルウェアを参照される。
現在のIoT攻撃の大部分は、相容れない低い労力と高度なレベルであり、既存の技術的措置によって緩和される可能性がある。
論文 参考訳(メタデータ) (2023-12-01T16:10:43Z) - Navigating the IoT landscape: Unraveling forensics, security issues, applications, research challenges, and future [6.422895251217666]
本稿では、異なる分野におけるIoTに関する法医学的およびセキュリティ上の問題についてレビューする。
ほとんどのIoTデバイスは、標準的なセキュリティ対策が欠如しているため、攻撃に対して脆弱である。
消費者のセキュリティを意識したニーズを満たすために、IoTはスマートホームシステムの開発に使用できる。
論文 参考訳(メタデータ) (2023-09-06T04:41:48Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
インターネット・オブ・センセーズ(IoS)は、すべてのヒト受容体に対する欠陥のないテレプレゼンススタイルのコミュニケーションを約束する。
我々は,新たなセマンティックコミュニケーションと人工知能(AI)/機械学習(ML)パラダイムがIoSユースケースの要件を満たす方法について詳しく述べる。
論文 参考訳(メタデータ) (2022-12-21T03:37:38Z) - Machine and Deep Learning for IoT Security and Privacy: Applications,
Challenges, and Future Directions [0.0]
IoT(Internet of Things)の統合は、多数のインテリジェントデバイスを人間による最小限の干渉で接続する。
現在のセキュリティアプローチも改善され、IoT環境を効果的に保護できる。
ディープラーニング(DL)/機械学習(ML)メソッドは、IoTシステムからセキュリティ上のインテリジェンスシステムへの安全な接触を可能にするため、IoTシステムを保護するために不可欠である。
論文 参考訳(メタデータ) (2022-10-24T19:02:27Z) - Smart Home, security concerns of IoT [91.3755431537592]
IoT(モノのインターネット)は、国内環境において広く普及している。
人々は自宅をスマートホームにリニューアルしているが、インターネットに接続された多くのデバイスを常時オンの環境センサーで所有するというプライバシー上の懸念はいまだに不十分だ。
デフォルトパスワードと弱いパスワード、安価な材料とハードウェア、暗号化されていない通信は、IoTデバイスの主要な脅威と脆弱性として識別される。
論文 参考訳(メタデータ) (2020-07-06T10:36:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。