論文の概要: Continuous Analysis: Evolution of Software Engineering and Reproducibility for Science
- arxiv url: http://arxiv.org/abs/2411.02283v1
- Date: Mon, 04 Nov 2024 17:11:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:48:29.491156
- Title: Continuous Analysis: Evolution of Software Engineering and Reproducibility for Science
- Title(参考訳): 継続的分析: ソフトウェア工学の進化と科学の再現性
- Authors: Venkat S. Malladi, Maria Yazykova, Olesya Melnichenko, Yulia Dubinina,
- Abstract要約: 本稿では,科学研究における課題を解決するために,連続分析の概念を紹介する。
CAを採用することで、科学コミュニティは研究成果の妥当性と一般化性を確保することができる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Reproducibility in research remains hindered by complex systems involving data, models, tools, and algorithms. Studies highlight a reproducibility crisis due to a lack of standardized reporting, code and data sharing, and rigorous evaluation. This paper introduces the concept of Continuous Analysis to address the reproducibility challenges in scientific research, extending the DevOps lifecycle. Continuous Analysis proposes solutions through version control, analysis orchestration, and feedback mechanisms, enhancing the reliability of scientific results. By adopting CA, the scientific community can ensure the validity and generalizability of research outcomes, fostering transparency and collaboration and ultimately advancing the field.
- Abstract(参考訳): 研究における再現性は、データ、モデル、ツール、アルゴリズムを含む複雑なシステムによって妨げられている。
研究は、標準化されたレポート、コードとデータ共有の欠如、厳密な評価の欠如による再現性危機を浮き彫りにする。
本稿では、科学研究における再現性の問題に対処するため、継続的分析の概念を導入し、DevOpsライフサイクルを拡張した。
継続的分析は、バージョン管理、分析オーケストレーション、フィードバックメカニズムによるソリューションを提案し、科学的結果の信頼性を高める。
CAを採用することで、科学コミュニティは研究成果の妥当性と一般化性を確保し、透明性と協力を育み、最終的に分野を前進させることができる。
関連論文リスト
- Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Reproducibility and Geometric Intrinsic Dimensionality: An Investigation on Graph Neural Network Research [0.0]
これらの努力に基づいて構築することは、マシンラーニングにおけるもうひとつの重要な課題、すなわち次元の呪いに向かっています。
本研究は,機械学習モデルが学習対象のデータセットの拡張次元にどのような影響を受けているのかを,本質的な次元の密接な関連概念を用いて検討する。
論文 参考訳(メタデータ) (2024-03-13T11:44:30Z) - SciOps: Achieving Productivity and Reliability in Data-Intensive Research [0.8414742293641504]
科学者たちは、実験や研究の目標を拡大するために、機器、自動化、協調ツールの進歩をますます活用している。
神経科学を含む様々な科学分野は、コラボレーション、インスピレーション、自動化を強化するための重要な技術を採用してきた。
厳密な科学的操作の原理を説明する5段階の能力成熟度モデルを導入する。
論文 参考訳(メタデータ) (2023-12-29T21:37:22Z) - Repeatability, Reproducibility, Replicability, Reusability (4R) in
Journals' Policies and Software/Data Management in Scientific Publications: A
Survey, Discussion, and Perspectives [1.446375009535228]
我々は、引用指向のプラクティス、ジャーナルポリシー、レコメンデーション、アーティファクト記述/評価ガイドライン、提出ガイド、技術的進化の間に大きなギャップを見出した。
著者と学術雑誌の関係を,共同で科学的結果を改善するための相互取り組みとして分析した。
我々は,学術論文を著者に提出するための統一的で標準化された再現性ガイドとともに,雑誌政策の勧告を提案する。
論文 参考訳(メタデータ) (2023-12-18T09:02:28Z) - AI Competitions and Benchmarks: The life cycle of challenges and
benchmarks [0.49478969093606673]
我々は、堅牢なイノベーションの軸として、科学研究とアルゴリズム開発コミュニティを創造的に活用する必要性を論じる。
高度に複雑で大規模なデータ分析における協調的なコミュニティの関与は、ロバストな方法論を見つけるための一つのアプローチとして現れてきた。
論文 参考訳(メタデータ) (2023-12-08T18:44:10Z) - A Metadata-Based Ecosystem to Improve the FAIRness of Research Software [0.3185506103768896]
研究ソフトの再利用は、研究効率と学術交流の中心である。
DataDescエコシステムは、詳細でマシン操作可能なメタデータを備えたソフトウェアインターフェースのデータモデルを記述するためのアプローチである。
論文 参考訳(メタデータ) (2023-06-18T19:01:08Z) - A Diachronic Analysis of Paradigm Shifts in NLP Research: When, How, and
Why? [84.46288849132634]
本稿では、因果発見と推論技術を用いて、科学分野における研究トピックの進化を分析するための体系的な枠組みを提案する。
我々は3つの変数を定義し、NLPにおける研究トピックの進化の多様な側面を包含する。
我々は因果探索アルゴリズムを用いてこれらの変数間の因果関係を明らかにする。
論文 参考訳(メタデータ) (2023-05-22T11:08:00Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
このレビューは、現在利用可能な機械学習とデータ分析のための最先端ライブラリとフレームワークに関する包括的なビジョンを提供することを目的としている。
現在利用可能なEdge-to-Cloud Continuumに関する実験的な研究のための、主要なシミュレーション、エミュレーション、デプロイメントシステム、テストベッドも調査されている。
論文 参考訳(メタデータ) (2022-04-29T08:06:05Z) - Applications of physics-informed scientific machine learning in
subsurface science: A survey [64.0476282000118]
地球系は、化石エネルギー探査、廃棄物処理、地質炭素隔離、再生可能エネルギー生成などの人間の活動によって変化した地質形成です。
したがって、ジオシステムの責任ある使用と探索は、効率的な監視、リスクアセスメント、および実用的な実装のための意思決定支援ツールに依存するジオシステムガバナンスにとって重要です。
近年の機械学習アルゴリズムと新しいセンシング技術の急速な進歩は、地下研究コミュニティがジオシステムガバナンスの有効性と透明性を向上させる新しい機会を提示しています。
論文 参考訳(メタデータ) (2021-04-10T13:40:22Z) - Challenges in biomarker discovery and biorepository for Gulf-war-disease
studies: a novel data platform solution [48.7576911714538]
ROSALINDという新しいデータプラットフォームを導入し、課題を克服し、健全で重要なコラボレーションを育み、科学的調査を進めます。
ROSALINDは、自己管理されたアクセシビリティ、リンク性、可積分性、中立性、信頼性を持つリソース有機体を指します。
過去12ヶ月のGWI研究におけるROSALINDの展開により、データ実験と分析のペースが加速し、多数のエラーソースが削除され、研究品質と生産性が向上しました。
論文 参考訳(メタデータ) (2021-02-04T20:38:30Z) - Using satellite imagery to understand and promote sustainable
development [87.72561825617062]
持続可能な開発成果を理解するために衛星画像を用いた成長する文献を合成する。
我々は、重要な人間関係の結果と、衛星画像の量の増大と解像度について、地上データの質を定量化する。
不足およびノイズの多いトレーニングデータの観点から、モデル構築に対する最近の機械学習アプローチをレビューする。
論文 参考訳(メタデータ) (2020-09-23T05:20:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。